Complex magnetic phases in Ca$_{1-x}$Na$_x$V$_2$O$_4$ with 0≤ x ≤ 1

J. Sugiyama1, Y. Ikedo1, P. L. Russo2, T. Goko2, E. J. Ansaldo2, J. H. Brewer2,3, K. H. Chow4, and H. Sakurai5

1Toyota Central Research and Development Labs. Inc., Nagakute, Aichi 480-1192, Japan
2TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 Canada
3CIfAR and Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada
4Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 Canada
5National Institute for Material Science, Tsukuba, Ibaraki 305-0044, Japan

The crystal structure of Ca$_{1-x}$Na$_x$V$_2$O$_4$ is the same to that of CaFe$_2$O$_4$; that is, V$_2$O$_4$ double-chains, which are formed by a network of edge-sharing VO$_6$ octahedra, align along the b-axis so as to make an irregular hexagonal one-dimensional (1D) channel. Furthermore, since V ions form a zig-zag chain in the V$_2$O$_4$ double-chain, Ca$_{1-x}$Na$_x$V$_2$O$_4$ is expected to exhibit interesting magnetic behavior due to both geometrical frustration and low dimensionality.

Although the ground state of CaV$_2$O$_4$ was thought to be a gapless chiral ordered state, which is predicted for the S=1 zig-zag spin system with the competing nearest- and next-nearest-neighbor AF coupling, recent NMR results suggest the existence of a long-range antiferromagnetic (AF) transition with T_N=69 K [1]. This is also consistent with past neutron measurements, in which two different AF substructures coexist in the $a \times 2b \times 2c$ AF supercell, and each superstructure is collinear roughly parallel to the b-axis [2].

The other end member, NaV$_2$O$_4$, recently prepared by a high-pressure technique [3], exhibits metallic conductivity down to 2 K, while χ measurements indicates an AF transition with T_N=140 K. Magnetic anisotropy measurements using single crystal samples suggest that the interchain interaction is AF, but the intrachain interaction is ferromagnetic (FM). The AF structure of NaV$_2$O$_4$ has, to authors’ knowledge, never been investigated thus far by NMR, neutron, or $\mu^+\text{SR}$ measurements.

We have therefore made a systematic $\mu^+\text{SR}$ experiment on the Ca$_{1-x}$Na$_x$V$_2$O$_4$ system with x=0 - 1 using polycrystalline samples. We found the existence of static magnetic order below 70 K with mainly two different μ^+-spin precession frequency (ω_μ) signals for CaV$_2$O$_4$, whereas the four ω_μ’s below 120 K for NaV$_2$O$_4$. Interestingly, the four ω_μ’s merge into one at T between 120 and 140 K. Combining with the results of the other samples with 0< x <1, we have clarified the complex magnetic phase diagram of Ca$_{1-x}$Na$_x$V$_2$O$_4$.