β-NMR investigation of the vortex lattice near the interface of silver and Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-δ}$ thin films

H. Saadaoui1, W.A. MacFarlane2, G.D. Morris3, Z. Salman3, K.H. Chow4, P. Fournier5, M.D. Hossain1, T.J. Parolin2, M. Smadella1, Q. Song1, D. Wang1, and R.F. Kiefl1,3,6

1Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
2Chemistry Department, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
3TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
4Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2G7
5Département de Physique, Université de Sherbrooke, Québec, Canada J1K 2R1
6Canadian Institute for Advanced Research, Canada

A low energy beam of highly spin polarized 8Li$^+$ was used to investigate the magnetic field distribution in a 40 nm thin film of silver evaporated on a 300nm film of electron-doped superconductor Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-δ}$. The lineshapes in the silver broaden below the transition temperature T_C due to vortices emerging from the superconductor. The measured lineshapes are symmetric and show unexpected broadening at higher fields inconsistent with an ordered vortex lattice. An example of the broadening versus temperature is shown below.

![Graph showing asymmetry in Ag/Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-δ}$ ($T_C=22.5$ K).](image)

Fig. 1: Asymmetry in Ag/Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-δ}$ ($T_C=22.5$ K).