Search for Broken Time Reversal Symmetry Near the Surface of YBa$_2$Cu$_3$O$_{7-\delta}$.

1TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T2A3
2Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T1Z1
3Department of Physics, University of Alberta, Edmonton, AB, Canada T6G2G7
4Department of Physics, University of Illinois, Urbana Champaign, IL 61801, USA
5Chemistry Department, University of British Columbia, Vancouver, BC, Canada V6T1Z1
6Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, UK
7Canadian Institute for Advanced Research, Canada

Beta-detected NMR (β-NMR) of 8Li$^+$ stopped within a 15 nm layer of Ag on top of a (110)-oriented YBa$_2$Cu$_3$O$_{7-\delta}$ film ($T_c = 86.6$ K) has been carried out to search for spontaneous magnetism near the surface of the underlying superconductor. The average depth of the 8Li stopped within the Ag layer was adjusted to 8 nm by decelerating the incoming beam to 2 keV prior to reaching the sample surface. The 8Li NMR lineshape measures the magnetic field distribution just outside the superconductor. Measurements were made with weak magnetic fields applied parallel to the sample surface. These show a marked increase in resonance linewidth but no change in frequency on cooling below T_c. Spectra taken in 10 G show the same temperature dependence in linewidth as in 20 G, rising from 350 Hz (the nuclear dipolar width of Li in Ag) just above T_c to 800 Hz at 5 K. This broadening indicates the presence of a static, randomly-oriented magnetic field of about 0.7 G associated with superconductivity in the YBa$_2$Cu$_3$O$_{7-\delta}$, perhaps arising from a time reversal symmetry breaking complex order parameter.