Low-energy μSR and transport studies of (Ga,Mn)As

S.R. Dunsiger1,2, J.P. Carlo1, T. Goko1,3, G. Nieuwenhuys4, T. Prokscha4, A. Suter4, E. Morenzoni4, D. Chiba5,6, Y. Nishitani6, T. Tanikawa5,6, F. Matsukura6,5, H. Ohno6,5, R.H. Hener7, Y.J. Uemura1

1Department of Physics, Columbia University, New York, NY 10027, USA
2Physik Department, Technische Universität München, D-85748 Garching, Germany
3TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 2A3, Canada
4Paul Scherrer Institut, Labor for Myon-Spin Spektroskopie, CH-5232 Villigen PSI, Switzerland
5ERATO Semiconductor Spintronics Project, Japan Science and Technology Agency, Japan
6Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communications, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
7Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA

The III-V semiconducting materials (Ga,Mn)As exhibit an unusual long range interaction between Mn ions which is mediated by charge carriers, the Mn atoms simultaneously acting as a magnetic species and charge donors. The resulting ferromagnetic order and metal-insulator transition in thin films of (Ga,Mn)As have been studied by low-energy μSR at PSI, in addition to magnetization and transport measurements at Tohoku University, on specimens with Mn 1.0 % [sample A], 3.0 % [B], 3.4 % (as grown) [C] and Mn 3.4 % (annealed) [D]. In transport studies, samples A and B show semiconducting behavior, while C and D exhibit metallic conductivity. In μSR measurements in zero field (ZF) and a weak transverse field (WTF) of 100 G, ferromagnetism with nearly full (at least more than 80 %) volume fraction was observed in B ($T_c \sim 30$ K), C (~45K), and D (~75K), with a very sharp transition in C and D, and a slightly gradual one in B. The sample A remained paramagnetic down to $T = 2$K. These results indicate: (1) unlike general concerns over the rather inhomogeneous nature of the phase transitions in (Ga,Mn)As, ferromagnetic order occurs sharply at T_c and prevails over the entire volume; and (2) the semiconductor-to-metal transition and para-to-ferromagnetic transitions occur at different Mn concentrations, as a semiconducting film shows a static ferromagnetism. We will compare these results with μSR studies of quantum phase transitions in itinerant-electron heli/ferromagnets MnSi, (Sr,Ca)RuO$_3$ [1] and a geometrically spin-frustrated insulator Cu(Cl,Br)La(Nb,Ta)$_2$O$_7$ [2].
