Exotic antiferromagnetic transition in deformed pyrochlore lattice Ni$_2$(OH)$_3$Cl of atacamite-structure

X. G. Zheng$^{1,2,}\ast$, M. Hagihala2, K. Nishiyama3, and T. Kawae4

1 Department of Physics, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
2 Department of Physics, School of Engineering, Saga University, Saga 840-8502, Japan
3 Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-MSL), Ibaraki 305-0801, Japan
4 Department of Applied Quantum Physics, Faculty of Engineering, Kyushu University, Fukuoka 812-8581, Japan

In recent years, we found unconventional magnetic transitions in a mineral compound clinoatacamite Cu$_2$(OH)$_3$Cl and the coexistence of long-range antiferromagnetic order and spin fluctuation in clinoatacamite Cu$_2$(OH)$_3$Cl [1]. It is the first example of the S = 1/2 (Cu$^{2+}$) Heisenberg quantum spin on a pyrochlore lattice and the mother compound for the “perfect kagome lattice” ZnCu$_3$Cl$_2$(OH)$_6$ exhibiting spin liquid behavior [2]. We further found that in another compound with a similar chemical formula Co$_2$(OH)$_3$Cl, a partial FM order coexists with spin fluctuation at zero-field [3], which is reminiscent of the field-induced “kagome ice” state in pyrochlore Dy$_2$Ti$_2$O$_7$.

We further found that there is a rich material series in the chemical formula of M_2(OH)$_3$X, with M = Cu, Co, Ni, Fe, Mn, and X = Cl, Br, or I [3]. Many chemical formulas have polymorphic crystal structures which can be the deformed pyrochlore lattice, two-dimensional kagome-like lattices or triangular lattice. Up to date we have extensively investigated their magnetic properties with multiple magnetic probes including magnetization, specific heat, neutron diffraction and muon spin relaxation/rotation (μSR). Exotic magnetic properties arising from geometric frustration and complicated phase transitions have been observed for many compounds. Of particular interest is a novel antiferromagnetic order in some atacamite-type-structure systems. For example, in atacamite-structure Ni$_2$(OH)$_3$Cl, strong geometric frustration and an antiferromagnetic transition below 5 K was found. While neutron diffraction witnessed unambiguously an antiferromagnetic long-range order, the μSR method can’t “see” this order, instead, the local field detected behaved quite like a dynamically fluctuating one. This unconventional behavior cannot be explained consistently with any known magnetic order. It may be the first practical material system for a novel type of antiferromagnetic order theoretically predicted on pyrochlore lattice, i.e., the Kawamura model [4] which proposes a unconventional order where the squared Fourier amplitude orders but the amplitude itself fast fluctuating.