Study of the He$\mu + H_2$ Reaction at Room Temperature: Theory and Measurement

Donald J. Arseneau1, Donald G. Fleming2, Oleksandr Sukhorukov2, Jess H. Brewer3, Bruce C. Garrett4 and Donald G. Truhlar5

1TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada
2Department of Chemistry, UBC, 2036 Main Mall, Vancouver BC, Canada
3Department of Physics & Astronomy, UBC, 6224 Agricultural Road, Vancouver BC, Canada
4Chemical Sciences Division, Pacific Northwest National Lab, Richland WA, 99352 USA
5Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis MN, 55455-0431 USA

Muonic helium Heμ is a neutral species with the composition $\alpha^{++}\mu^-e^-$ which can be regarded as a unique heavy H-atom isotope with mass 4.1 amu. It extends the range of H-atom isotopes for the study of kinetic isotope effects from Mu to Heμ, a remarkable factor of 36 in mass.

We have begun kinetics studies of the reaction

$$\text{He}^\mu + H_2 \rightarrow \text{He}^\mu H + H \quad (2)$$

as a complement to the earlier study [1] of Mu + H$_2$ → MuH + H, which is a seminal reaction with precisely-calculated potential energy surfaces [2].

We here present a preliminary reaction rate constant for reaction (1) measured at 295 K, as well as variational transition state calculations of the same. The figure shows both results, with a measured rate $k = 4.1 \pm 0.7 \times 10^{-16}$ cm3s$^{-1}$ and a calculated value of 2.46×10^{-16} cm3s$^{-1}$. Despite the large uncertainty in these initial measurements, there appears to be a discrepancy, perhaps indicating more tunneling in the reaction than the VTST calculations account for.

![Fig. 1: Reaction rates for the He$\mu + H_2$ reaction measured (points and solid fitted line) and calculated (dashed line) at 295 K.](image)