Spin-liquid/spin-glass-like behavior in pyrochlore Pr$_2$Ir$_2$O$_7$

D. E. MacLaughlin1, S. Nakatsuji2, Y. Machida2, K. Ishida3, R. H. Heffner4,5, Lei Shu1, O. O. Bernal6

1 Department of Physics and Astronomy, Univ. of California, Riverside, California 92521, U.S.A.
2 Institute for Solid State Physics, Univ. of Tokyo, Kashiwa 277-8581, Japan
3 Department of Physics, Graduate School of Science, Kyoto Univ., Kyoto 606-8502, Japan
4 Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
5 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.
6 Department of Physics and Astronomy, California State Univ., Los Angeles, California 90032, U.S.A.

Pr$_2$Ir$_2$O$_7$ is a metallic compound with a well-isolated Pr$^{3+}$ T_3 magnetic doublet CEF ground state. Transport properties suggest a Kondo effect and partial screening of the moments, even below a RKKY interaction temperature $T^* \sim 20$ K; geometrical frustration was suggested as a mechanism for suppression of magnetic order. The magnetic susceptibility exhibits an unusual $-\ln T$ temperature dependence over more than a decade of temperature below ~ 2 K, below which there is evidence for partial spin freezing. μSR experiments in powder samples of Pr$_2$Ir$_2$O$_7$ for temperatures in the range 0.02–20 K yield two-component relaxation functions in low applied fields similar in shape to that observed in canonical spin glasses. This is strong evidence for freezing of a dilute concentration c of randomly sited frozen Pr$^{3+}$ moments, presumably associated with lattice defects. The static relaxation rate a at low temperatures corresponds to $c \sim 0.01–0.03$. The spin-freezing process therefore leaves $\geq 97\%$ of the Pr$^{3+}$ spins in a spin-liquid state. Relaxation at later times is dynamic in origin.

The temperature dependencies of a and the dynamic rate λ give a glass temperature $T_g \approx 25$ K $\approx T^*$, which is a completely unexpected result, as previous bulk measurements had given no hint of spin freezing above ~ 0.1 K. Furthermore, freezing of a small fraction c of spins should occur at a much lower temperature ($\sim cT^*$ for a $1/r^5$ RKKY interaction). The temperature dependence of a (which represents the order parameter in spin glasses) is non-mean-field-like, continuing to increase well below T_g. Perhaps the most surprising aspect of our initial results is the absence of a peak in $\lambda(T)$ at T_g. Such a peak is expected due to critical slowing down of ‘pre-formed’ local moments, and is observed in spin glasses and the pyrochlore antiferromagnet Y$_2$Mo$_2$O$_7$. A mean-field-like transition would narrow the critical region and make observation of the peak difficult, but the non-mean-field behavior of $a(T)$ makes this scenario unlikely. Alternatively, the localized moments themselves may exist only below T_g, similar to Cooper pairs in conventional superconductors. Further work is clearly needed to understand this very unusual behavior.