Mn-Substitution-Induced Magnetic Phase Transitions in Sr$_3$Ru$_2$O$_7$

1TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
2Dept. of Physics, Columbia University, New York, New York 10027, USA
3Dept. of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
4Nanoelectronics Research Institute, AIST, Tsukuba, Ibaraki 305-8568, Japan
5Dept. of Physics and Astronomy, Univ. of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
6Grad. School Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

The layered perovskite ruthenates Sr$_{n+1}$Ru$_n$O$_{3n+1}$ exhibit a variety of ordered states. The number of layer n changes the dimensionality of electronic states. The single-layered Sr$_2$RuO$_4$ ($n = 1$) is an unconventional superconductor with spin-triplet pairing. In contrast, Sr$_4$Ru$_3$O$_{10}$ ($n = 3$) is an itinerant ferromagnet with Curie temperature of 100 K. The double-layered Sr$_3$Ru$_2$O$_7$ ($n = 2$) have an important role because of its intermediate dimensionality between spin-triplet superconductor and itinerant ferromagnet. Sr$_3$Ru$_2$O$_7$ is essentially paramagnetic metal. However, a metamagnetic transition is observed in large magnetic fields in Sr$_3$Ru$_2$O$_7$ and the relation between metamagnetism and quantum criticality was discussed. Recently, it was reported that Mn substitution causes a drastic phase change in Sr$_3$Ru$_2$O$_7$ from the paramagnetic metal to an antiferromagnetic insulator. For Sr$_3$(Ru$_{0.95}$Mn$_{0.05}$)$_2$O$_7$, the antiferromagnetic order and a discontinuous structural change simultaneously occur at ~ 45 K.

We report the results of muon spin relaxation (μSR) measurements on single crystal of Sr$_3$(Ru$_{0.95}$Mn$_{0.05}$)$_2$O$_7$. The oscillation amplitude of μSR spectrum in a week transverse field (WTF) of 30 Oe suddenly decreases at ~ 135 K and almost vanishes below ~ 100 K. The oscillation amplitude represents a volume fraction of the paramagnetic region. This result indicates that a static magnetic order takes place around 135 K and essentially all the volume orders magnetically below 100 K. An enhancement of magnetization is also seen below ~ 135 K, suggesting a ferromagnetic order. The initial asymmetry of WTF-μSR spectrum, which means the asymmetry projected to the beam direction, starts to decrease at ~ 100 K. The projected asymmetry reduces by half at ~ 40 K and maintains half asymmetry below ~ 40 K. Since the magnetic volume fraction is almost 100% below ~ 100 K, this change comes from a variation in the direction of the internal field. In these experiments, the c axis was parallel to the beam direction. Therefore, the internal field is parallel to the c axis above ~ 100 K and inclined at about 45 degrees to the c axis below ~ 40 K. The relaxation rate obtained by fitting the generalized Kubo-Toyabe function to the zero-field μSR spectrum increases rapidly at ~ 40 K. Probably this rapid increase corresponds antiferromagnetic transition. A discontinuous lattice change is observed in neither the Mn concentration dependence up to 5% nor the temperature dependence above 40 K. These results suggest that the parent compound Sr$_3$Ru$_2$O$_7$ is a nearly-ferromagnetic paramagnet.