Local magnetism of YbCrSb₃, an anomalous member of the RECrSb₃ series

K.H. Chow¹, W.A. MacFarlane², Z. Salman^{3,4}, I. Fan¹, S.J. Crerar⁵, A. Mar⁵, M. Egilmez¹, J. Jung¹, B. Hitti⁶, D.J. Arseneau⁶

¹Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2G7
 ²Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
 ³Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1
 3PU, UK

⁴ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK

⁵Department of Chemistry, University of Alberta, Edmonton, Canada T6G 2G2

⁶TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3

In recent years, the family of quasi-two-dimensional intermetallic compounds with the chemical formula RECrSb₃ (RE=La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Yb) have been the subject of a number of studies aimed at understanding their magnetic and transport properties. The compound YbCrSb₃ is a relatively new member of the RECrSb₃ series. A detailed report of its structural, magnetic and electrical properties was first presented in Ref. [1]. YbCrSb₃ is isostructural to the other RECrSb₃ compounds in the series. However, it appears to show "anomalous" properties. These include (i) a cell volume that is considerably larger than that expected from an extrapolation of increasing atomic number of the RE atom due to lanthanide contraction, and (ii) whereas the Curie temperature T_c in the other RECrSb₃ compounds decrease monotically with increasing size of the RE ion, YbCrSb₃ shows a dramatic increase in the T_c that is in fact the highest of all the RECrSb₃ materials studied to date. The suggestion is that these differences are a consequence of the Yb being in a divalent charge state while the other RE ions in the series are trivalent.

In this paper, we report μ SR measurements of the local magnetism in polycrystalline YbCrSb₃. The experiments in near zero-field show coherent muon spin precession (at ≈ 80 MHz at low temperatures), establishing at the local level that a significant fraction of the sample is in a well-ordered, 2D-like, long range magnetic state below ≈ 240 K. In addition, there is evidence of additional ordered magnetism below ≈ 50 K. These studies are compared with the bulk measurements [1], as well as previous μ SR measurements on other selected RECrSb₃ compounds, such as RE=La [2].

S.J. Crerar, L. Deakin, and A. Mar, Chem. Mater. 17, 2780 (2005).
 W.A. MacFarlane, K.H. Chow, Z. Salman, A.V. Tkachuk, and A. Mar, Physica B 374-375, 71 (2006).

No.074 202