Local magnetism of YbCrSb$_3$, an anomalous member of the RECrSb$_3$ series

K.H. Chow1, W.A. MacFarlane2, Z. Salman3,4, I. Fan1, S.J. Crerar5, A. Mar5, M. Egilmez1, J. Jung1, B. Hitti6, D.J. Arseneau6

1Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2G7
2Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
3Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, UK
4ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
5Department of Chemistry, University of Alberta, Edmonton, Canada T6G 2G2
6TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3

In recent years, the family of quasi-two-dimensional intermetallic compounds with the chemical formula RECrSb$_3$ (RE=La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Yb) have been the subject of a number of studies aimed at understanding their magnetic and transport properties. The compound YbCrSb$_3$ is a relatively new member of the RECrSb$_3$ series. A detailed report of its structural, magnetic and electrical properties was first presented in Ref. [1]. YbCrSb$_3$ is isostructural to the other RECrSb$_3$ compounds in the series. However, it appears to show “anomalous” properties. These include (i) a cell volume that is considerably larger than that expected from an extrapolation of increasing atomic number of the RE atom due to lanthanide contraction, and (ii) whereas the Curie temperature T_c in the other RECrSb$_3$ compounds decrease monotonically with increasing size of the RE ion, YbCrSb$_3$ shows a dramatic increase in the T_c that is in fact the highest of all the RECrSb$_3$ materials studied to date. The suggestion is that these differences are a consequence of the Yb being in a divalent charge state while the other RE ions in the series are trivalent.

In this paper, we report μSR measurements of the local magnetism in polycrystalline YbCrSb$_3$. The experiments in near zero-field show coherent muon spin precession (at \approx 80 MHz at low temperatures), establishing at the local level that a significant fraction of the sample is in a well-ordered, 2D-like, long range magnetic state below \approx 240K. In addition, there is evidence of additional ordered magnetism below \approx 50 K. These studies are compared with the bulk measurements [1], as well as previous μSR measurements on other selected RECrSb$_3$ compounds, such as RE=La [2].