Magnetism and Superconductivity in Heavy Fermion Superconductor CeCo(In$_{1-x}$Cd$_x$)$_5$

K. Ohishi1,6, R.H. Heffner1,2, J. Spehling3, G.J. Macdougall4, T.U. Ito1, W. Higemoto1, A. Amato6, D. Andreica6,7, G. Nieuwenhuyys6, H.H. Klauss3, G.M. Luke4, J.D. Thompson2, A.D. Bianchi8 and Z. Fisk8

1Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Institute for physics of solids, TU Dresden, Dresden, Germany
4Department of Physics and Astronomy, McMaster University, Ontario, Canada L8P 4N3
5Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
6Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen, Switzerland
7Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, ROMANIA
8University of California Irvine, Irvine, California 92697, USA

The heavy fermion superconductor CeCoIn$_5$ has the highest T_c (= 2.3 K) in a series of Ce-based materials. Recently, it has been found [1] that Cd substitution on the In site drives the system towards antiferromagnetism (AFM). Remarkably, applying pressure can reverse this effect. Recent NMR studies [2] suggest that the magnetism develops locally in the vicinity of the Cd atoms. Neutron scattering experiments [3] on a sample with a nominal [1] Cd concentration of 10% showed the coexistence of superconductivity and AFM. The AFM order develops below T_N with the commensurate wave vector $Q_{AF} = (1/2, 1/2, 1/2)$ and the magnetic intensity does not increase below T_c.

Zero field μSR measurements on single crystalline samples of CeCo(In$_{1-x}$Cd$_x$)$_5$ ($x = 0.03, 0.10$ and 0.15) were performed in order to further elucidate the magnetic and superconducting properties. In contrast to neutron scattering, μSR can independently measure both the magnitude of the local field and the magnetic volume fraction. A single muon precession signal was observed below T_N in both the $x = 0.10$ and 0.15 samples, with different magnetic volume fractions. The muon frequency, which is proportional to the AFM moment, leveled off below $T_c \sim 1.3$ K in $x = 0.10$, similar to the neutron results. The observed frequency in $x = 0.15$ is 20% larger than that in $x = 0.10$, suggesting enhancement of internal field in $x = 0.15$. No magnetic signal in zero applied field was observed for $x = 0.03$. We will discuss these results in view of the microscopic interplay of magnetism and superconductivity in this material.

† Present Address: Advanced Meson Science Laboratory, RIKEN, Wako 351-0198, Japan.