Study of 8Li$^+$ in platinum using β-NMR technique

1Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2G7
2Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
3Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

The Knight shift and spin-lattice relaxation rate of isolated 8Li$^+$ in a 50 nm thick film of the enhanced paramagnet platinum (Pt) is investigated with the β-detected NMR technique. An example of the resonance spectrum is shown in Fig.1, indicating that the frequency shift of Pt compared to the insulator MgO is negative (approximately -330 ppm at room temperature). The shift and spin-lattice relaxation are studied from 5 to 300 K. The results in Pt will be compared to those obtained for isolated 8Li$^+$ in simple elemental metals such as silver [1] and copper [2], as well as another enhanced paramagnet Pd [3].

![Resonance Spectrum](image)

Fig. 1: Typical resonance spectrum of 8Li$^+$ in Pt/MgO sample at 100 K.