According to past neutron diffraction measurements [1], delafossite-type oxide CuCrO$_2$ undergoes an antiferromagnetic (AF) transition with $T_N = 26$ K, and exhibits long-range static AF order with a 120° spin structure within the plane including the c-axis. In order to clarify the magnetism of CuCrO$_2$, we have performed $\mu^+\text{SR}$ experiments on $\text{CuCr}_{1-x}\text{Mg}_x\text{O}_2$ ($x=0-0.03$) using the πE (Dolly spectrometer) beam line at PSI.

Figure 1 shows the T dependences of (a) the weak transverse field (wTF) A_{TF} for the $x=0$ and the $x=0.03$ samples, and (b) μ^+-spin precession frequency obtained from the zero field (ZF) $\mu^+\text{SR}$ spectrum for CuCrO$_2$. The $A_{TF}(T)$ curves for both samples exhibit a abrupt decrease at $T_N = 26$ K with decreasing T, i.e. the Mg$^{2+}$ substitution for Cr does not alter the magnitude of T_N. The ZF μ^+SR measurements however indicate that spontaneous muon-spin precession (~ 50 MHz at $T \to 0$ K) is clearly observed for the $x=0$ sample below T_N, whereas the absence of static order for the $x=0.03$ sample even at the lowest T (1.8 K) measured.

Fig. 1: T dependences of (a) A_{TF} for $x = 0$ and $x = 0.03$, (b) μ^+ spin precession frequencies of ZF $\mu^+\text{SR}$ spectra for $x = 0$.