Search for Magnetism in HfO$_2$ Thin Films

A. Suter1, E. Morenzoni1, T. Prokscha1, H. Luetkens1, G.J. Nieuwenhuys1,4, Y. Krockenberger2, and L. Alff3

1Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
2Correlated Electron Research Center, AIST Tsukuba Central 4, Tsukuba, Ibaraki, 305-8562 Japan
3Institute for Material Science, Darmstadt University of Technology, D-64287 Darmstadt, Germany
4Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands

A recent intriguing report of the observation of unexpected and highly anisotropic ferromagnetism in the high-κ dielectric oxide HfO$_2$ thin films [1] has stirred the scientific community. If validated, this discovery of d^0 ferromagnetism in a transparent oxide undoubtedly represents a major advance for the field of spintronics [2]. Interestingly, the high-κ dielectric oxides such as HfO$_2$ are already under active consideration as gate dielectrics for next generation devices in semiconductor technology in view of the material compatibility with silicon [3]. Introducing a magnetic response in such dielectrics should enable an integration of complementary metal-oxide semiconductor (CMOS) with spintronic technology. The magnetic moment, derived from magnetization measurements, found by various groups in HfO$_2$ thin films is about 0.1 μ_B per formula unit.

From preliminary bulk studies [4] it was deduced that different muon states are present in HfO$_2$: μ^+, Mu$^0_{\text{atomic}}$, and, for $T < 50$K, Mu$^0_{\text{shallow}}$. Differently to these findings, our preliminary low energy μSR (LE-μSR) study on HfO$_2$ thin films grown c-cut sapphire reveals a dominant μ^+ signal (derived from ZF/TF measurements). A pronounced two component depolarization in the whole measured temperature range ($T = 4 \ldots 200$K) is observed. We attribute the fast depolarization as due to magnetism consistent with the macroscopic measurements (and not due to muonium depolarization/diffusion processes). We will discuss possible mechanisms which could lead to d^0 ferromagnetism.