Static magnetic order and anisotropy of the layered cobalt dioxides $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Co}_2\text{O}_y$ and $\text{Bi}_2\text{Sr}_2\text{Co}_2\text{O}_y$

J. Sugiyama1, Y. Ikedo1, H. Nozaki1, P. L. Russo2, J. H. Brewer2,3, E. J. Ansaldo2, G. D. Morris2, K. H. Chow4, D. Andreica5, A. Amato6, T. Fujii7, S. Okada8, and I. Terasaki8

1Toyota Central Research and Development Labs. Inc., Nagakute, Aichi 480-1192, Japan
2TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 Canada
3CIFAR and Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada
4Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 Canada
5Faculty of Physics, Babes-Bolyai University, 3400 Cluj-Napoca, Romania
6Lab. for Muon-Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
7Cryogenic Center, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
8Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

The magnetism of a Pb-doped Bi$_2$Sr$_2$Co$_2$O$_y$ (BSCO) crystal has been investigated by μ+SR spectroscopy. Weak transverse-field (wTF-) μ+SR measurements show that the whole sample enters into a magnetic state below ~4.5 K. Combining the results of zero-field (ZF-) μ+SR experiment with susceptibility measurements, it is clarified that the sample is in a ferromagnetic ordered phase with a Curie temperature (T_C) of 4.7 K and with the ordered internal magnetic field almost parallel to the c-axis. On the other hand, a pure BSCO crystal is also found to exhibit a bulk magnetic transition at 1.0 K by μ+SR. Since the relationship between the reduced transition temperature and reduced internal magnetic filed for BSCO is almost equivalent to that for Pb-doped BSCO, the origin of the magnetic transition for both crystals is thought to be explained by common physics.

Although both wTF- and ZF- measurements confirm the absence of static magnetic order above T_C for both crystals, weak longitudinal-field measurements indicate the existence of a local maximum around 60 K ($=T_A$) in the temperature dependence of the relaxation rate, implying the increase in magnetic inhomogeneity towards T_A. This suggests an essential role of magnetic fluctuations on the metal-to-insulator-transition around 60 K [1], which is seen in the T dependence of resistivity for Pb-doped BSCO and BSCO [2].