Static magnetic order on the triangular antiferromagnet \(\text{Li}_x\text{NiO}_2 \) with \(x \leq 1 \)

J. Sugiyama\(^1\), K. Mukai\(^1\), Y. Ikedo\(^1\), H. Nozaki\(^1\), P. L. Russo\(^2\), D. Andreica\(^3\), A. Amato\(^4\), K. Ariyoshi\(^5\), and T. Ohzuku\(^5\)

\(^1\)Toyota Central Research and Development Labs. Inc., Nagakute, Aichi 480-1192, Japan
\(^2\)TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 Canada
\(^3\)Faculty of Physics, Babes-Bolyai University, 3400 Cluj-Napoca, Romania
\(^4\)Lab. for Muon-Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
\(^5\)Department of Applied Chemistry, Osaka City University, Osaka 558-8585, Japan

In the rhombohedral \(\text{LiNiO}_2 \) lattice with space group \(\text{R3m} \), the \(\text{NiO}_2 \) plane and the Li layers form alternating stacks along the \(c_H \)-axis in a hexagonal setting. In the \(\text{NiO}_2 \) planes, Ni ions form a two-dimensional triangular lattice (2DTL) by a network of edge-sharing \(\text{NiO}_6 \) octahedra. Since the 2DTL planes are separated by nonmagnetic Li layers and \(\text{Ni}^{3+} \) is in a low spin state \((t^6_{2g}e^1_g) \) with \(S=1/2 \), \(\text{LiNiO}_2 \) is thought to be an ideal material for elucidating frustrated magnetism on a half-filled 2DTL. Thus far, there has been no long-range magnetic order detected down to the lowest \(T \) investigated, although the susceptibility (\(\chi \)) measurements show a spin-glass-like anomaly around 10 K. Both heat capacity and NMR measurements, however, suggest a spin-liquid state with short-range ferromagnetic (FM) correlations [1]. A \(\mu^+\)SR experiment has also indicated the absence of static magnetic order down to 2 K as well as showing the existence of fast fluctuating moments [2]. Recent neutron diffraction (ND) experiments have proposed the possibility of local orbital ordering of \(\text{Ni}^{3+} \) into three sublattices [3].

In order to gain elucidation upon the nature of the \(\text{NiO}_2 \) plane and solve the current confusing situation, we have investigated the variation of magnetism with the spin concentration on the 2DTL. For \(\text{LiNiO}_2 \), Li ions are known to be easily deintercalated by electrochemical reaction down to \(x \sim 0 \). Here, we report the microscopic magnetic nature of \(\text{Li}_x\text{NiO}_2 \) with \(x=1, 2/3, 1/2, 1/3, \) and 0.1 by means of \(\mu^+\)SR, and the existence of a variety of phases as a function of \(x \) in \(\text{Li}_x\text{NiO}_2 \). In particular, the appearance of static magnetic order, most likely IC-SDW order for \(\text{Li}_x\text{NiO}_2 \) with \(x=1 \) and 2/3, suggests the AF ground state of the \(\text{NiO}_2 \) plane.