A new detector system for the ALC spectrometer – first experience with G-APDs in μSR instrumentation

A. Stoykov1,2, R. Scheuermann1, K. Sedlak1, T. Shiroka1, V. Zhuk2

1Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
2Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

The development and performance of a new detector system for the Avoided Level Crossing (ALC) μSR-spectrometer, located at the Swiss Muon Source of the Paul Scherrer Institut, are presented.

The distinctive feature of the new ALC-detector is the absence of such conventional components as photomultiplier tubes and light guides. Their functions are taken over by Geiger-mode Avalanche Photodiodes (G-APDs) and wavelength-shifting fibers. This approach allows us to build a compact, magnetic field insensitive detector, requiring low operation voltage (see Fig.1).

Fig. 1: New detector module of the ALC spectrometer – design view. Two rings hold ten detector segments, each hosting two positron counters. One of the positron counters can be replaced by a muon counter – in this configuration one gets the possibility to perform time differential μSR measurements. Only two detector segments are shown in this drawing.