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Abstract

In the muon ðg� 2Þ experiment at Brookhaven National Laboratory, the spin precession frequency oa is obtained from a standard w2

minimization fit applied to the time distribution of decay electrons. The unusually high accuracy ð�0:5ppmÞ of the experiment puts

stringent requirements on the quality of the fit and the level of understanding of the statistical properties of the fitted parameters. We

discuss the properties of the fits and their implications on the derived value for oa, including estimates of the effect of an imperfect fit
e front matter r 2007 Elsevier B.V. All rights reserved.
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function, methods of including additional external information to reduce the error, the effects of splitting the data into many smaller

subsets of data, applying different weighting methods to the data using energy information, and various tests of data suitability.

r 2007 Elsevier B.V. All rights reserved.

PACS: 02.50.Cw; 02.50.Tt

Keywords: w2 minimization fit; Statistical errors; Correlations; Systematic errors; Set–subset variance; Bias of fit parameters
1. Introduction

In the muon ðg� 2Þ experiment E821 at Brookhaven
National Laboratory [1–6] two quantities must be mea-
sured precisely in order to obtain the muon anomalous
magnetic moment, or ‘‘anomaly’’, am ¼

g�2
2 . One of these is

the average magnetic field seen by the muons in the storage
volume, measured in terms of the spin precession
frequency, op, of a free proton at rest. The other is the
average muon spin precession frequency, oa. The methods
used to extract oa from the data are the major subjects
discussed in this article.

The average proton spin precession frequency is derived
from the frequencies observed in an array of NMR probes
mounted on a trolley car, which is moved through the
muon storage region every two or three days. The resulting
map of the magnetic field in the storage region is weighted
according to the distribution of stored muons to obtain the
average field. A separate array of NMR probes fixed in
locations above and below the storage region are used to
monitor changes in the field between trolley mappings.

In the approximations that the focusing electric field can
be neglected and ~b � ~B ¼ 0, am is related to the measured
quantities B and oa by oa ¼

eB
m

am (see Refs. [1–6]). This
expression depends on an independent knowledge of the
muon mass m and on the constants involved in the
conversion of op to B. am can also be calculated through
the expression

am ¼
am

ð1þ amÞ � am
¼

oa

oL � oa

¼
oa=op

oL=op � oa=op
¼

R

l�R
ð1Þ

where oL is the Larmor spin precession rate of the muon.
We have used Eq. (1) to determine am because R ¼ oa=op

is evaluated directly from the quantities measured, and
l ¼ mm=mp ¼ 3:18334539ð10Þ, the ratio of the muon to the
proton magnetic moment, is exceptionally well-measured
elsewhere [7,8].

The muon ðg� 2Þ experiment collected data sets in each
of the years 1997–2001. It is important to note that to
prevent bias, the oa and op analyses for each data set were
completely independent. Intermediate results for oa and op

were always presented with concealed offsets. The offsets
were revealed only after all analyses were declared
complete, and at that point, no further changes could be
made to the values of oa and op.
The muon spin precession frequency oa appears as a
modulation in the measured number of muon decay
electrons above some pre-selected energy threshold,
Ethr, as a function of time, a function well-described by
the five-parameter fitting function

GðtÞ ¼ N�e
�t=t½1þ A cosðoatþ fÞ�. (2)

This functional form applies to the time distribution of
decay electrons from one detector for one muon injection
(one ‘‘spill’’), and also to the sum of these spectra, by virtue
of the equalityX

i

N�ie
�ti=t½1þ Ai cosðoatiÞ þ fi�

¼ N�e
�t=t½1þ A cosðoatþ fÞ� ð3Þ

where the subscript i denotes the variables pertaining to
one spill. The ti are muon decay times measured in a given
detector relative to the approximate muon injection time.
The typical Ethr � 1:8GeV produced Ai � 0:35. The muon
injection polarization (helicity þ1 and �1 for the m� and
mþ, respectively) together with the sign of the electron
decay asymmetry (�1 andþ1, respectively) leads to fi � p.
The phases fi are affected to a small extent by, for
example, small uncertainties in the muon injection time and
by detector-to-detector variations in signal delays. Note
that variation in the parameters Ai, fi, N0i from spill-to-
spill do not affect the values of either t or oa. Small
variations in Ai, for example because the detector gains
vary from one injection to the next, are of little
consequence. Similarly, large variation in fi from one spill
to another do not lead to a systematic shift in the value of
oa. However, excessive variation in f dilute the magnitude
of A in the summed spectrum and thereby increase the
statistical uncertainty in oa.
Unlike the case of op, where systematic errors are

dominant, the determination of oa was statistics-limited.
Indeed, while extracting fit parameters from a histogram is
a familiar technique in high-energy physics, the relative
accuracy of our result ðsam=am�5� 10�7Þ required that the
statistical uncertainties on the fit parameters and the
correlations among them be well-understood. Naturally,
the murky boundary between possible systematic errors
and statistical fluctuations must also be examined. In our
experiment, the effects of small deviations from the
ideal spectral form, generally produced by a combination
of beam motion and limited detector acceptance, were
carefully studied.
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We include discussions of the following topics:
	
 statistical errors and correlations of the fit parameters;

	
 reducing the uncertainty on the fit parameters by

incorporating additional (external) knowledge of linear
combination[s] of those parameters;

	
 estimates of systematic shifts of fit parameters due to

neglected backgrounds;

	
 comparisons of fit parameters obtained from fitting the

full set of data with those obtained from fitting some
subset of data (set–subset relations);

	
 derivation of the bias on the fit parameters resulting

from the w2 technique when the errors are based on the
observed number of events, or on the expected number
of events, and comparison with the (unbiased) max-
imum likelihood technique;

	
 systematic biases of the fit parameters arising from a w2

minimization procedure (the bias due to the method)
and bias reduction techniques.

We also discuss briefly
	
 alternative and less-common data weighting methods,
for example weighting according to the asymmetry of
the decay electrons in order to optimize the statistical
uncertainty;

	
 the experiment-specific ratio method, in which we

regroup data in a special way in order to simplify the
functional form of the distribution and in order to
reduce the dependence of the fitted value of oa on slowly
varying multiplicative corrections to the five-parameter
function;

	
 the ‘‘folding’’ method of monitoring for the presence of

a background process when its period is known;

	

1We discuss this choice in Section 7.
the Kolmogorov–Smirnov histogram compatibility test
which we use for data selection and for detector gain
corrections.

A detailed uncertainty budget of the muon ðg� 2Þ
experiment is presented in Ref. [6] and references therein.

In the following text, we derive general equations first
and then apply them to our specific needs. Many of those
general equations and their derivations may be found in
standard textbooks or elsewhere. Nonetheless we choose to
present them for completeness and as a framework for
other derivations.

Note that for simplicity, we omit the subscript ’’a’’ at the
muon ðg� 2Þ frequency o.

2. Statistical properties of w2 minimization fit

In a typical analysis, one attempts to fit the data with
some parameterized function, which is expected to describe
the underlying distribution of the data with sufficient
precision. The optimal values for these parameters are
obtained by minimizing the difference between the data
and the function. Some well-established ways to quantify
this difference are the squared differences, likelihood
function, and w2, the last of which was used, almost
exclusively, in our experiment.
In this section we will consider the basic properties of the

w2 minimization technique; some of the limitations, biases,
and approximations of this technique will be discussed in
greater detail in Section 7.
Suppose we have some (binned) distribution, e.g. a time

spectrum, which can be described by a function of L

parameters f ðx1;x2; . . . ;xL; tÞ 
 f ðx; tÞ. Then, by definition

w2ðxÞ 

X

n

ð f ðx; tnÞ �NnÞ
2

s2n
(4)

where tn and Nn are the position of the center of the nth
channel of the histogram and its content (number of
counts), respectively, and sn is the statistical error
associated with the nth channel. In our application, we
expect the distribution of counts in a given bin to follow
Poisson statistics, which becomes nearly Gaussian for large
numbers. We require that the number of counts in each
channel be sufficiently large that the Gaussian distribution
is a good approximation. For our analysis we use
s2n ¼ f ðx; tnÞ, which provides a somewhat better fit quality1

than the more traditional choice s2n ¼Nn. Thus

w2ðxÞ ¼
X

n

ð f ðx; tnÞ �NnÞ
2

f ðx; tnÞ
. (5)

2.1. Statistical fluctuations of Nn

We define x� 
 ðx�1;x�2; . . . ; x�LÞ to be the set of
(unknown) ‘‘true’’ parameter values for our histogram.
Correspondingly, f ðx�; tnÞ is the ‘‘true’’ value for the
number of counts Nn in the nth channel. For an ensemble
of similar histograms (measurements), Nn follows a
Poisson distribution with a mean value equal to f ðx�; tnÞ:

hNni ¼ f ðx�; tnÞ (6)

where h. . .i means ensemble average. For a given histo-
gram, Nn � f ðx�; tnÞ is the statistical fluctuation in the
number of counts in the nth channel. In this paper we use
equations for ensemble averages of several of the lower
powers of Nn � f ðx�; tnÞ, which follow from equations for
the central moments of the Poisson distribution:

hNn � f ðx�; tnÞi ¼ 0 (7)

hðNn � f ðx�; tnÞÞ
2
i ¼ f ðx�; tnÞ (8)

hðNn � f ðx�; tnÞÞ
3
i ¼ f ðx�; tnÞ (9)

hðNn � f ðx�; tnÞÞ
4
i ¼ f ðx�; tnÞ þ 3ð f ðx�; tnÞÞ

2 (10)

and also the equation

hðNn � f ðx�; tnÞÞðNm � f ðx�; tmÞÞi ¼ 0 for nam (11)
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which follows from the statistical independence of the
numbers of counts in different channels.

2.2. Statistical fluctuations of the fit parameters

As a result of statistical fluctuations in the number of
counts in individual histogram channels, minimization of
w2 in Eq. (5) gives a vector of ‘‘optimal’’ fit parameters x,
shifted with respect to the ‘‘true’’ value x� by Dx ¼ x� x�.
The components of the vector Dx are functions of the
fluctuations in Nn � f ðx�; tnÞ and, as such, can be derived
from the w2 minimization requirement. Assuming
f ðx�; tnÞb1, we have

0 ¼
1

2

qw2

qxi

�
X

n

f �Nn

f
f 0i �

X
n

f � þ
P

j f 0jDxj �Nn

f �
f 0i

¼
X

j

Dxj

X
n

f 0i f 0j

f �
�
X

n

f 0i
f �
ðNn � f �Þ ¼ 0 ð12Þ

and hence

Dxi ¼
X

j

ðA�1Þij
X

n

f 0j

f �
ðNn � f �Þ (13)

where

Aij ¼
X

n

f 0i f 0j

f �
(14)

are the elements of the symmetric matrixA, and the matrix

A�1 is the inverse of A. Here for simplicity we introduce

the following notations: f 
 f ðx; tÞ, f � 
 f ðx�; tÞ and f 0i 


ðqf =qxiÞx¼x�
and using the Taylor expansion f ðx; tÞ ¼

f ðx� þ Dx; tÞ � f � þ
P

j f 0j Dxj. Also, in Eqs. (12)–(14) and

thereafter, expressions like
P

n

f 0i f 0j
f �

(where
P

n means

summation over histogram channels) should be understood

as
P

n f 0i ðx; tnÞf
0
jðx; tnÞ=f 0iðx; tnÞ and may be written asP

n ð
f 0i f 0j
f �
Þn. Eq. (13), one of the basic equations in statistics,

relates the statistical fluctuations of the fit parameters to
the statistical fluctuations of the number of counts in
individual histogram channels.

If the bin width b of the fitted histogram is significantly
shorter than the typical structure of the underlying
distribution, the summation in Eq. (14) can be replaced
by an integral:

P
n �

R
dt=b. Furthermore, b can be

eliminated in favor of the total number of events in the
histogram, N, through the normalization relation

N ¼
X

n

Nn �
X

n

f �ðtnÞ �

Z
f �ðtÞ

dt

b
(15)

yielding

Aij ¼
NR
f � dt

Z
f 0i f 0j

f �
dt. (16)

In many cases, replacing sums by integrals allows one to
obtain analytical expressions for the important statistical
quantities and simplifies their analysis.
2.3. Statistical errors and correlations for w2 minimization

fit

Eq. (13) can be used to obtain the statistical uncertainties
of the fit parameters as well as the correlations between any
pair. The error matrix (also known as the covariance
matrix) is defined as the ensemble average hDxi Dxji:

hDxi Dxji ¼
X

ab

ðA�1ÞiaðA
�1Þjb

X
nm

f 0a
f �

� �
n

f 0b
f �

� �
m

�hðNn � f �ÞðNm � f �Þi

¼
X

ab

ðA�1ÞiaðA
�1ÞjbAab ¼ ðA

�1Þij . ð17Þ

The error matrix is nothing but the inverse of the matrix
A. The specific case i ¼ j of Eq. (17) gives the equation for
the statistical errors of the fit parameters:

s2i 
 hðDxiÞ
2
i ¼ ðA�1Þii. (18)

We note here that for the case of a one parameter fit,
s2x ¼A�1, and Eq. (13) can be written as

Dx ¼ s2x
X

n

f 0

f �
ðNn � f �Þ. (19)

The value of w2 obtained from a histogram fit is also a
function of statistical fluctuations:

w2 ¼
X

n

ð f �NnÞ
2

f
�
X

n

ð f � �Nn þ
P

i f 0iDxiÞ
2

f �

¼
X

n

ðNn � f �Þ
2

f �
� 2

X
i

Dxi

X
n

f 0i
f �
ðNn � f �Þ

þ
X

ij

Dxi Dxj

X
n

f 0i f 0j

f �

¼
X

n

ðNn � f �Þ
2

f �
�
X

ij

AijDxi Dxj. ð20Þ

For an ensemble average of w2 we have

hw2i ¼
X

n

hðNn � f �Þ
2
i

f �
�
X

ij

AijhDxi Dxji

¼
X

n

f �
f �
�
X

ij

AijðA
�1Þji

¼
XNch

n¼1

1�
XL

i¼1

1 ¼ Nch � L. ð21Þ

Thus, we obtain a familiar result: hw2i is equal to the
number of channels of the histogram, Nch, minus the
number of fit parameters L, i.e. equal to the number of
degrees of freedom of the fit.
The mean square deviation of w2 from its mean value is,

by definition, the variance of w2:

s2w2 
 hðw
2 � hw2iÞ2i ¼ hðw2Þ2i � 2hw2ihw2i þ hw2i2

¼ hðw2Þ2i � hw2i2. ð22Þ
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While hw2i2 is trivially obtained as Eq. (21) squared,
evaluation of hðw2Þ2i is more sophisticated and tedious. It is
given in the Appendix. The result for s2w2 is

s2w2 ¼ hðw
2Þ

2
i � hw2i2

¼ ðN2
ch � 2NchLþ L2 þ 2Nch � 2LÞ � ðNch � LÞ2

¼ 2Nch � 2L. ð23Þ

Eqs. (21) and (23) are used to check the quality (goodness)
of the fit.

3. Statistical errors and correlations for the ðg� 2Þ five-

parameter fit

As mentioned above, the function GðtÞ ¼ N�e
�t=t½1þ

A cosðotþ fÞ� with the fit parameters ðx1;x2; x3; x4; x5Þ ¼

ðN�; t;A;o;fÞ is of central importance to the muon ðg� 2Þ
experiment as it describes well the time distribution of the
decay electrons. Evaluation of the elements of matrixA, as
well as other important quantities to be discussed later,
involves integrations of some combinations of the expo-
nential (e�t=t), harmonic (sinðotþ fÞ or cosðotþ fÞ) and
polynomial (t; t2) functions. In some cases such integrations
can be performed analytically. In others, successive
approximations in the small dimensionless parameter � ¼
ðtoÞ�1 ¼ 0:011 may be employed. Some integrations
involve 1þ A cosðotþ fÞ in the denominator. In order to
obtain analytical expressions in such cases we use expan-
sions in 1

2
A2 ¼ 0:08.

To the leading order in � and 1
2

A2, the matrix A for the
fit function GðtÞ is
A ¼

N

N2
�

N

N�t
ts

t
þ 1

� �
0 0 0

N

N�t
ts

t
þ 1

� � N

t2
ts

t
þ 1

� �2
þ 1

� �
0 0 0

0 0
N

2
0 0

0 0 0
NA2t2

2

ts

t
þ 1

� �2
þ 1

� �
NA2t
2

ts

t
þ 1

� �

0 0 0
NA2t
2

ts

t
þ 1

� � NA2

2

2
666666666666666664

3
777777777777777775

(24)
where ts is the start time of the fit. The end time of the fit,
tmax, is not that important provided it is at least several
muon lifetimes, because of the exponentially decreasing
number of counts. It is taken to be þ1 for simplicity.

Using Eqs. (18) and (24) one readily finds the statistical
errors for the five parameters:

sN� ¼
N�ffiffiffiffiffi

N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðts=tþ 1Þ2 þ 1

q
(25)

st ¼
tffiffiffiffiffi
N
p (26)
sA ¼

ffiffiffi
2
pffiffiffiffiffi

N
p (27)

so ¼

ffiffiffi
2
p

tA
ffiffiffiffiffi
N
p (28)

sf ¼

ffiffiffi
2
p

A
ffiffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðts=tþ 1Þ2 þ 1

q
. (29)

A in Eq. (24), as well as its inverse A�1, are diagonal-
block (or step) matrices, which allows one to split the
problem into three independent ones with lower rank
matrices, thus simplifying calculations substantially.
Design parameters were chosen to minimize systematic

errors and the statistical errors described in Eqs. (25)–(29).
It follows from Eq. (28) that the relative error so=o scales
as ðtoÞ�1 and hence improves (decreases) for increasing
muon energy Em (larger t ¼ t�g ¼ t�Em=mc2) and larger
magnetic field B (larger o ¼ ðg� 2ÞeB=2m). Indeed, the
increasing statistical accuracy of the three muon ðg� 2Þ
experiments performed at CERN could be traced, in part,
to a steady increase of the muon momentum.
In the most recent CERN experiment and in the current

BNL experiment, the muon momentum is fixed at
Pm ¼ 3:094GeV=c, implying a g factor of 29.30 and a time
dilated muon lifetime of 64:38ms. At this magic momentum,
the focusing electric field has no effect on the muon spin
precession. o is determined by the magnetic field alone,
which is made as uniform as possible. The reduction in
systematic errors allowed by use of the magic momentum is
so great that further increase in muon energy is pointless.
The weak focusing storage ring ðn � 0:135Þ and its
9 cm aperture diameter produce a range in stored
muon momenta of about �0:2%. For a storage ring
of radius 7.112m and magnetic field B ¼ 1:45T, the
cyclotron period is about 149.2 ns, and the spin precession
period, T ¼ 2p=o, is roughly 4:365ms. The choice of
the magnetic field strength is a trade-off between the
competing demands of statistical and systematic accuracy:
while a higher field increases o, the magnetic field should
not be so large as to drive the iron pole tips deep into
saturation.
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The decay electrons, which are collected from a few tens
of microseconds to about 600ms after muon injection into
the ring, range in energy from 0 to 3.097GeV. Because the
relative uncertainty in o (see Eq. (28)) scales as ðA

ffiffiffiffiffi
N
p
Þ
�1,

the number of registered decay electrons and their average
weak-asymmetry depends on the energy threshold Ethr

used in the experiment. Thus both ðA
ffiffiffiffiffi
N
p
Þ
�1 and so=o also

depend on Ethr. Fig. 1 shows N and A and the combination
A

ffiffiffiffiffi
N
p

as functions of Ethr=Emax, where Emax � 3:1GeV.
The maximum of A

ffiffiffiffiffi
N
p

, and hence the minimum of so=o,
is reached at about Ethr=Emax ¼ 0:6 or Ethr ¼ 1:8GeV.

And, of course, so / 1=
ffiffiffiffiffi
N
p

implies a better statistical
accuracy for more muon decays. From Eq. (28) we see that
for the typical case of A ¼ 0:4, and with ðtoÞ�1 ¼ 0:011, we
need N ¼ 6� 109 muons to achieve a relative precision of
0.5 ppm on o.

3.1. Correlations

The non-vanishing off-diagonal elements A12 ¼A21 ¼
N

N�t
ðtst þ 1Þ and A45 ¼A54 ¼

NA2t
2
ðtst þ 1Þ of the matrix A

in Eq. (24) indicate that there are only two pairs of non-
vanishing correlations among the parameters of the five-
parameter fit: one correlation is between N� and t and
the other is between o and f. These matrix elements
(and hence correlations) vanish when ts ¼ �t, i.e. when
t ¼ 0 is chosen to be one muon lifetime after the time of the
beginning of the fit. Matrix A becomes diagonal:

A ¼

N

N2
�

0 0 0 0

0
N

t2
0 0 0

0 0
N

2
0 0

0 0 0
N A2t2

2
0

0 0 0 0
N A2

2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

. (30)
It is important to realize that the choice of ts ¼ �t does
not improve the statistical errors on these parameters, a
point discussed in more detail below, but by choosing
ts ¼ �t, the center of gravity time frame, we do simplify
some of the calculations. In some instances, this choice of ts
improves the stability of w2 fitting algorithms, whose
performance can be hampered by correlations between
parameters.
3.2. Improvement of so through knowledge of the phase

Since the frequency and phase are highly correlated, in
general, an independent determination of the phase could
be used to reduce the statistical error so. As we will see, the
size of the improvement depends on the time at which the
phase is known. For example, if the phase is known only at
a time t after the start of the fit, then there will be no
improvement in the error of o. While independent knowl-
edge of the phase was insufficient to reduce so in our
experiment, we include this discussion for others.
In the muon ðg� 2Þ experiment, polarized muons from

the forward decay of in-flight pions are injected into the
muon storage ring. At the injection point, the spins of
negative muons are roughly parallel to their momenta.
(For positive muons, the spins and momenta are nearly
anti-parallel.) The highest energy electrons from the three-
body decay of the muon are the ones which carry the most
information about the spin direction, and therefore are the
ones of most importance for the ðg� 2Þ experiment. The
preferred directions of high-energy decay electrons are anti-
parallel and parallel to the m� and mþ spin directions,
respectively. Therefore the phases of the oscillation in the
number of electrons versus time at the time of injection are
the same for both m� and mþ.
Consider a simplified model of injection, taken to be

at t ¼ 0, where the muon polarization, and hence the
phase f in Eq. (2), is known precisely. In that case, f is a
constant and can be excluded from the set of fit
parameters. To calculate so for such a case, one has to
eliminate the fifth row and fifth column of A in Eq. (24),
which then results in

so ¼

ffiffiffi
2
p

tA
ffiffiffiffiffi
N
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðts=tþ 1Þ2 þ 1

q . (31)

This is less than so in Eq. (28) by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðts=tþ 1Þ2 þ 1

q
. Since data taking always starts later than

injection, tsX0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðts=tþ 1Þ2 þ 1

q
X

ffiffiffi
2
p

. Thus the

accuracy of o can be improved by better than a factorffiffiffi
2
p

if the phase (i.e. average polarization of muons) is
known precisely at the moment of injection. The amount of
improvement depends on the time at which f is known. In
the next section we discuss the more realistic case when
there is independent knowledge of the ðg� 2Þ phase at an
arbitrary time but with limited precision sF .



ARTICLE IN PRESS
G.W. Bennett et al. / Nuclear Instruments and Methods in Physics Research A 579 (2007) 1096–11161102
4. Improvement of statistical errors from independent

knowledge of a linear combination of fit parameters

Suppose we can measure independently some linear
combination of fit parameters, F ¼

P
i Cixi, with a limited

precision sF . The result of such a measurement is denoted
as F�. In order to improve the statistical errors of the fit
parameters xi through additional knowledge of the
combination F , we may add an extra term ðF � F�Þ

2=s2F
to the equation for w2:

w2 ¼
X

n

ð f �NnÞ
2

f �
þ
ðF � F�Þ

2

s2F
. (32)

We denote F� 

P

i Cix�i to be the ‘‘true’’ value for F , and
introduce DF� 
 F� � F �. By definition, the ensemble
average of ðDF�Þ

2 is equal to the variance of F :
hðDF�Þ

2
i 
 s2F . It is convenient to rewrite ðF � F�Þ in

Eq. (32) as

F � F� ¼ ðF � F �Þ � ðF� � F �Þ ¼
X

i

Ciðxi � x�iÞ � DF�

¼
X

i

CiDxi � DF�. ð33Þ

Then Eq. (32) reads

w2 ¼
X

n

ð f �NnÞ
2

f �
þ

1

s2F

X
j

CjDxj � DF�

 !2

(34)

and for the w2 minimization condition we have

0 ¼
1

2

qw2

qxi

¼
X

j

Dxj

X
n

f 0i f 0j

f �
�
X

n

f 0i
f �
ðNn � f �Þ

þ
1

s2F
Ci

X
j

CjDxj �
1

s2F
CiDF�

¼
X

j

DxjðAcÞij �
X

n

f 0i
f �
ðNn � f �Þ �

Ci

s2F
DF� ¼ 0 ð35Þ

where we introduce the symmetric matrix Ac with matrix
elements Acð Þij :

ðAcÞij ¼Aij þ
CiCj

s2F
. (36)

The solution for Eq. (35) is

Dxi ¼
X

j

ðA�1c Þij

X
n

f 0j

f �
ðNn � f �Þ

þ
X

j

ðA�1c Þij
Cj

s2F
DF�. ð37Þ
Since statistical fluctuations Nn � f � and DF� are not
correlated, the error matrix hDxi Dxji for this case is

hDxi Dxji ¼
X

ab

ðA�1c ÞiaðA
�1
c Þjb

�
X

n

f 0a
f �
ðNn � f �Þ

X
m

f 0b
f �
ðNm � f �Þ

* +

þ
X

ab

ðA�1c ÞiaðA
�1
c Þjb

CaCb

s4F
hðDF�Þ

2
i

¼
X

ab

ðA�1c ÞiaðA
�1
c ÞjbAab

þ
X

ab

ðA�1c ÞiaðA
�1
c Þjb

CaCb

s2F

¼
X

ab

ðA�1c ÞiaðA
�1
c ÞjbðAcÞab

¼ ðA�1c Þij ð38Þ

which is same as in Eq. (17) with matrix A replaced by
matrix Ac. For the case where several linear combinations
of fit parameters Fk ¼

P
i Cikxi ðk ¼ 1; . . . ;KÞ are known

with limited precisions sFk
, matrix Ac becomes

ðAcÞij ¼Aij þ
XK

k¼1

CikCjk

s2Fk

. (39)

Eq. (38) can be used to study how we might reduce so. We
assume that the ðg� 2Þ phase is known to be f� at some
time t� with finite precision sF , independent of the fit. We
restrict our study to two parameters only, o and f (as x1

and x2), since the other parameters are statistically
independent of these two. In this case, the linear combina-
tion F is simply f�: F ¼ f�. In terms of the fit parameters
o and f it is

F ¼ f� 
 ðotþ fÞt¼t�
¼ ot� þ f (40)

thus C1 ¼ t� and C2 ¼ 1. The matrix ðAcÞij can be written
as

ðAcÞij ¼Aij þ s�2F CiCj

¼

s�2o�
ts

t
þ 1

� �2
þ 1

� �
þ s�2F t2� s�2o�

1

t
ts

t
þ 1

� �
þ s�2F t�

s�2o�
1

t
ts

t
þ 1

� �
þ s�2F t� s�2o�

1

t2
þ s�2F

0
BBB@

1
CCCA
ð41Þ

which gives

s�2o ¼ ðA
�1
c Þ22 ¼ s�2o� 1þ

s�2F

s�2f� þ s�2F

ðts þ t� t�Þ
2

t2

 !
.

(42)

Here we introduce so� ¼
ffiffi
2
p

tA
ffiffiffi
N
p , which is the statistical error

of o from the five-parameter fit alone (Eq. (28)), and also

sf� 

ffiffi
2
p

A
ffiffiffi
N
p , which is the statistical error of the phase in the
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center of gravity time frame from the five-parameter fit
alone (Eq. (29) for ts ¼ �t).

It follows from Eq. (42) that the figure of merit for sF ,
the precision required to improve so by an independent
measurement of the phase, is sf�. Since the goal of the
ðg� 2Þ experiment is to measure the muon spin ðg� 2Þ
precession frequency to a relative precision of �10�6,

sf� ¼ so� � t ¼
so�
o
� ot�10�6 � 100 ¼ 10�4 (43)

i.e. 0.1mrad. Note that it takes only ð10�4=2pÞ �
4:365ms ¼ 69 ps for the muon spin to precess by 0.1mrad,
which corresponds to 2.1 cm in the muon (or decay
electron) motion. That same level of precision is required
for a whole series of measurements: the angle of the
polarization of the muons injected into the storage ring, the
beam injection time and the position of the beam center at
a given time, the average trajectory length or travel time of
the decay electrons from the point of decay to the detector,
the acceptance of the detectors as a function of spin angle,
etc. Because each of these measurements is very challen-
ging, if not impossible, the project was not pursued. Still,
Eq. (42) may be useful wherever the five-parameter
function GðtÞ from Eq. (2) can be applied to fit an
experimental distribution.
5. Systematic shift of fit parameters due to neglected

backgrounds

Suppose we have some low-level background hðtÞ

admixed into the data, which are otherwise described by
a multi-parameter function f ðx; tÞ. The background might
be small enough to evade observation ‘‘by eye’’ or even to
spoil w2 considerably. Fitting the histogram with the
function f ðx; tÞ alone will give parameter values xi; shifted
with respect to the ‘‘true’’ values x�i by some
dxi ¼ xi � x�i. These systematic shifts dxi are functions of
hðtÞ and as such can be found from the minimization
requirement:

1

2

qw2

qxi

�
X

n

f �Nn

f
f 0i

�
X

j

dxi

X
n

f 0j f 0i

f
�
X

n

h

f
f 0i

¼
X

j

Aijdxi �
X

n

h

f
f 0i ¼ 0 ð44Þ

and hence

dxi ¼
X

j

ðA�1Þij �
X

n

h

f
f 0j (45)

with the same matrix A as in Section 2. Here we use
f ðx; tnÞ � f ðx�; tnÞ þ

P
j f 0jdxj and also Nn � f ðx�; tnÞþ

hðtnÞ, which follows from hNni ¼ f ðx�; tnÞ þ hðtnÞ. As
before, we may replace the summation with an integration,
resulting in

dxi ¼
X

j

ðA�1Þij �
1

b

Z
hðtÞ

f
f 0j dt

¼
X

j

ðA�1Þij �
NR
f dt

Z
hðtÞ

f
f 0j dt. ð46Þ

For the special case of a one parameter fit

dx ¼ s2x
X

n

h

f
f 0

or

dx ¼ s2x
NR
f dt

Z
hðtÞ

f
f 0 dt. (47)

In the center of gravity time frame, Eqs. (47) and (30)
give the following systematic shifts for the five ðg� 2Þ
parameters:

dN� ¼
1

et

Z 1
�t

hðtÞdt (48)

dt ¼
1

eN�t

Z 1
�t

thðtÞdt (49)

dA ¼
2

eN�t

Z 1
�t

hðtÞ cosðotþ fÞ
1þ A cosðotþ fÞ

dt (50)

do ¼ �
2

eN�At3

Z 1
�t

thðtÞ sinðotþ fÞ
1þ A cosðotþ fÞ

dt (51)

df ¼ �
2

eN�At

Z 1
�t

hðtÞ sinðotþ fÞ
1þ A cosðotþ fÞ

dt. (52)

5.1. Effect of coherent betatron oscillations

As an example of Eq. (51), we consider the systematic
shift of the ðg� 2Þ frequency caused by coherent radial
oscillations of the muon beam. At the beginning of each
data taking cycle, muons are injected through a narrow
aperture (the ‘‘inflector’’) into the ring. The focus, formed
at the injection point, is re-formed at regular intervals in
the horizontal and vertical direction. In addition, the
magnetic kick required to push muons onto stored orbits
was smaller than ideal, resulting in radial oscillations of
the beam centroid and an average radius which is about
2.5mm larger than that corresponding to the magic
momentum. The oscillations associated with the motion
of the centroid and the vertical and horizontal envelopes
are collectively referred to as coherent betatron oscillations
(CBO).
CBO modify the decay electron time spectrum through

their time-dependent effect on the acceptance of the
detector system, which is determined by the position and
momentum of the decaying muon. o is particularly
sensitive to the radial motion of the muon beam whose
frequency, as seen from a given detector station, is by the
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observed lifetime of 100ms for the CBO.
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chance very nearly equal to 2o. If not properly accounted
for, this small acceptance oscillation can introduce a
systematic shift into the value of o obtained from a w2 fit.

As an example, consider the case of neglecting just one
effect of the radial beam motion, the modulation of the
average time delay between the emergence of the electron
from muon decay and its registration in the detector
station. This modulation is equivalent to replacement of
time t in the five-parameter function by the CBO
modulated time: t! t� gðtÞ, with CBO function gðtÞ:

gðtÞ ¼ Acbo cosðocbotþ fcboÞ (53)

where ocbo and fcbo are the CBO frequency and phase,
respectively. Thus we obtain the modified five-parameter
function

f ðtÞ ¼ N�e
�ðt�gðtÞÞ=tð1þ A cos½oðt� gðtÞÞ þ f�Þ. (54)

For a small amplitude of modulation Acbo, f ðtÞ can be
written as

f ðtÞ � N�e
�t=t½1þ A cosðotþ fÞ� þ hðtÞ (55)

where hðtÞ is a small additive background,

hðtÞ ¼ N�e
�t=tgðtÞo½�þ �A cosðotþ fÞ þ A sinðotþ fÞ�

(56)

with � ¼ ðotÞ�1 ¼ 0:011. Substituting hðtÞ from Eq. (56)
into Eq. (51), to leading order � we have

do
o
� �

2Acbo

et3

Z 1
�t

te�t=t cosðocbotþ fcboÞ

�
sin2ðotþ fÞ

1þ A cosðotþ fÞ
dt. ð57Þ

The fraction in the integral can be decomposed into a
Fourier series2:

sin2 ðotþ fÞ
1þ A cosðotþ fÞ

¼
a

A
1� a cosðotþ fÞ

 

þ
X1
n¼2

½ð�aÞn � ð�aÞn�2� cos nðotþ fÞ

!
ð58Þ

where a 
 1�
ffiffiffiffiffiffiffiffiffi
1�A2
p

A
, and for the typical value A � 0:4;

a� 0:2. Sinceocbo � 2o, we would expect the term a
A
ða2 � 1Þ

cosð2otþ 2fÞ � � 1
2
cosð2otþ 2fÞ to give the leading,

‘‘resonance’’, contribution. Thus, dropping ‘‘non-reso-
nance’’ terms, we arrive at

do
o
�

Acbo

2et3

Z 1
�t

te�t=t cos½ðocbo � 2oÞtþ fcbo � 2f�dt

¼ �
Acbo

2t
x

x2 þ 1

2x

x2 þ 1
cosc�

x2 � 1

x2 þ 1
sinc

� �
ð59Þ

where we introduce x
ðocbo�2oÞt and c
�ðocbo � 2oÞt
þfcbo � 2f for simplicity. Furthermore, since ð 2x

x2þ1
Þ
2
þ

2For such decomposition we use Eq. (417.4) from Ref. [9].
ðx
2
�1

x2þ1
Þ
2
¼ 1, we may introduce an angle b such that sin b ¼

2x
x2þ1

and cos b ¼ x2�1
x2þ1

. Then Eq. (59) can be written as

do
o
¼ �

Acbo

2t
x

x2 þ 1
sinðb� cÞ

and hence
do
o

				
				pAcbo

2t
jxj

x2 þ 1
. ð60Þ

The function jxj=ðx2 þ 1Þ is shown in Fig. 2 by a dashed
line. It represents, in arbitrary units, the relative effect on o
for the case of an infinite CBO lifetime, tcbo. The effect
in the real experiment, where tcbo�100 ms, is given by the
solid line.

6. Set–subset relations for the w2 fit

6.1. Set–subset variance for the w2 fit parameters

In the following the correlation of errors between the
value x2 of parameters fitted on a subset of data and the
corresponding value x1 obtained when fitting a subset of
the same data is studied.
The variance of the difference ðx1 � x2Þ between the

subset result and the full set result will be called ‘‘set–subset
variance’’ for parameters x.
In order to search for perturbations to the five-parameter

function, perturbations which are often largest at early
times, we performed a series of w2 fits with successively later
start times, holding fixed the stop time. Since perturbations
would manifest themselves as variations in the fitted values
of o or other parameters as a function of the start time, it
was important to establish the expected statistical fluctua-
tions in parameters derived from the series of fits. The fits
with later start times necessarily involve a subset of the
data associated with fits with earlier start times; given
the data overlap, there will be a significant correlation in the
values of the parameters derived from fits to these spectra.



ARTICLE IN PRESS
G.W. Bennett et al. / Nuclear Instruments and Methods in Physics Research A 579 (2007) 1096–1116 1105
In this section we denote x1 and x2 to be the vectors of fit
parameters obtained from w2 minimization for the full
histogram O1 and for some subset O2 of channels in the
histogram, respectively. Denote x� to be the vector of ‘‘true’’
values of fit parameters, common for both O1 and O2. Then

x1i � x�i 
 Dx1i ¼
X

j

ðA�11 Þij

X
n2O1

f 0j

f �
ðNn � f �Þ

where A1ij ¼
X
n2O1

f 0i f 0j

f �
ð61Þ

x2i � x�i 
 Dx2i ¼
X

j

ðA�12 Þij

X
m2O2

f 0j

f �
ðNm � f �Þ

where A2ij ¼
X
m2O2

f 0i f 0j

f �
. ð62Þ

Calculate ensemble averages:

hx1i � x2ii ¼ hDx1i � Dx2ii ¼ hDx1ii � hDx2ii ¼ 0 (63)

hðx1i � x2iÞ
2
i ¼ hðDx1i � Dx2iÞ

2
i

¼ hDx2
1ii � 2hDx1i Dx2ii þ hDx2

2ii

¼ s21i � 2hDx1i Dx2ii þ s22i. ð64Þ

Using Eqs. (13) and (11), calculate the correlation term in
Eq. (64):

hDx1i Dx2ii ¼
X

jk

ðA�11 ÞijðA
�1
2 Þik

X
n2O1

X
m2O2

f 0j

f �

 !
n

�
f 0k
f �

� �
m

hðNn � f �ÞðNm � f �Þi

¼
X

jk

ðA�11 ÞijðA
�1
2 Þik

X
m2O2

f 0j f 0k

f 2
�

f �

¼
X

jk

ðA�11 ÞijðA
�1
2 ÞikA2jk ¼ ðA

�1
1 Þii ¼ s21i. ð65Þ

Thus the set–subset variance for the fit parameters is

hðx1i � x2iÞ
2
i ¼ s21i � 2s21i þ s22i ¼ s22i � s21i. (66)

N.B.: this equation is valid for any fit function, regardless
of the number of parameters and possible correlations
among them.
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Fig. 3. ðg� 2Þ frequency o as a function of fit start time. The solid lines

denote the one s statistical deviation given by Eq. (67).
Fig. 3 (cf. Fig. 4a from Ref. [3]) shows the ðg� 2Þ
frequency o as a function of fit start time. Statistical
errors in o are represented by vertical bars. The envelope
is centered at the initial value of the frequency,
o1 (obtained from a fit of the full set of histogram
channels), and indicates the one standard deviation
band allowed for a ‘‘random walk’’ of o, as calculated
using Eq. (66):

hðo1 � o2Þ
2
i ¼ s22o � s21o. (67)

Here, s2o and o2 refer to the subset of data at the later
start time. The variations in o are consistent with statistical
fluctuations.
6.2. Set–subset variance for the w2 value

The value of w2 as a function of fit start time has also
been employed for systematic studies. The set–subset
variance equations derived in Section 6.1 cannot be applied
directly for this case since w2 is not a fit parameter, and we
have to start from scratch.
As before, we shall use subscripts 1 and 2 for the full set

and for a subset of channels of a histogram (O1 and O2,
respectively) and also subscript 3 for the subset comple-
mentary to O2: O3 þ O2 ¼ O1. Using Eq. (20):

w21 � w22 ¼
X
n2O1

ðNn � f �Þ
2

f �
�
X

ij

A1ijDx1i Dx1j

�
X
n2O2

ðNn � f �Þ
2

f �
þ
X

ij

A2ijDx2i Dx2j

¼
X
n2O3

ðNn � f �Þ
2

f �
�
X

ij

A1ijDx1i Dx1j

þ
X

ij

A2ijDx2i Dx2j . ð68Þ

The mean value of w21 � w22, from the ensemble average of
Eq. (68), is given by

hw21 � w22i ¼ ðNch �Nch2Þ �
X

ij

A1ijhDx1i Dx1ji

þ
X

ij

A2ijhDx2i Dx2ji

¼ Nch �Nch2 � Lþ L ¼ Nch �Nch2 ¼ Nch3

ð69Þ

where Nch3 is the number of channels in the subset O3, i.e.
the total number of histogram channels Nch minus the
number of channels in the subset O2, Nch2. The set–subset
variance of w2 is defined as the mean square deviation of
w21 � w22 from its mean value:

s2w2
12

 hðw21 � w22 � hw

2
1 � w22iÞ

2
i ¼ hðw21 � w22Þ

2
i �N2

ch3. (70)



ARTICLE IN PRESS
G.W. Bennett et al. / Nuclear Instruments and Methods in Physics Research A 579 (2007) 1096–11161106
Evaluate

hðw21 � w22Þ
2
i ¼

X
n2O3

X
m2O3

hðNn � f �Þ
2
ðNm � f �Þ

2
i

ðf �Þnðf �Þm

þ
X
ijpq

A1ijA1pqhDx1i Dx1j Dx1p Dx1qi

þ
X
ijpq

A2ijA2pqhDx2i Dx2j Dx2p Dx2qi

þ 2
X

ij

A2ij

X
n2O3

1

f �
hðNn � f �Þ

2Dx2i Dx2ji

� 2
X

ij

A1ij

X
n2O3

1

f �
hðNn � f �Þ

2Dx1i Dx1ji

� 2
X
ijpq

A1ijA2pqhDx1i Dx1j Dx2p Dx2qi. ð71Þ

From the six terms in Eq. (71),
	
 the first term is equal to N2
ch3 þ 2Nch3 (see Eq. (148) in

Appendix);

	
 the second and third terms are equal to L2 þ 2L, see

Eq. (150); P

	
 in the fourth term, n is the sum of the histogram

channels n 2 O3, whereas sums including the terms
Dx2i and Dx2j (see Eq. (13)) are over histogram
channels n 2 O2. Therefore these two categories of sums
are statistically independent and the fourth term
becomes

2
X
n2O3
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f �
hðNn � f �Þ

2
i
X

ij

A2ijhDx2i Dx2ji

¼ 2
X
n2O3

X
ij

A2ijðA
�1
2 Þij ¼ 2Nch3L ð72Þ
	
 the fifth term isX
ij

A1ij

X
n2O3

1

f �
hðNn � f �Þ

2Dx1i Dx1ji

¼
X

ij

A1ij

X
n2O3

1

f �
hðNn � f �Þ

2
ihDx1i Dx1ji

þ
X
ijpq

A1ijðA
�1
1 ÞipðA

�1
1 Þjq

X
n2O3

f 0p f 0q

f 3
�

�½hðNn � f �Þ
4
i � hðNn � f �Þ

2
i2�

¼ Nch3Lþ
X

pq

ðA�11 Þpq

X
n2O3

f 0p f 0q

f �
2þ

1

f �

� �

� Nch3Lþ 2
X

ij

ðA�11 ÞijA3ij. ð73Þ

Here in the last step we neglect the term 1=f �51 and
introduce

A3ij 

X
n2O3

f 0i f 0j

f �
¼

X
n2O1

f 0i f 0j

f �

 !
�

X
n2O2

f 0i f 0j

f �

 !

¼A1ij �A2ij; ð74Þ
in the sixth term, we first separate out those parts of
	

sums in Dx1i and Dx1j, which include only channels n 2

O3 and hence are statistically independent of Dx2i and
Dx2j. The remaining parts of Dx1i and Dx1j are denoted
as D0x1i and D0x1j. Thus we haveX
ijpq

A1ijA2pqhDx1i Dx1j Dx2p Dx2qi

¼
X

ijpqab

A1ijA2pqðA
�1
1 ÞiaðA

�1
1 Þjb

�
X
n2O3

f 0a f 0b

f 2
�

hðNn � f �Þ
2
i

 !
hDx2p Dx2qi

þ
X
ijpq

A1ijA2pqhD0x1iD0x1jDx2p Dx2qi. ð75Þ

The first term in the right-hand side of Eq. (75) is

X
pq

A2pqðA
�1
2 Þpq �

X
ab

ðA�11 Þab

X
n2O3

f 0a f 0b
f �

¼ L�
X

ij

ðA�11 ÞijA3ij . ð76Þ

The second term in the right-hand side of Eq. (75)
can be found in a similar way as in Eq. (150), with the
result

ðLþ 2Þ �
X

ij

ðA�11 ÞijA2ij (77)

which coincides with that in Eq. (150) if A1 ¼A2.

Finally, summing up all the terms listed above and
using Eq. (74), we obtain an equation for the set–subset
variance w2:

s2w2
12
¼ hðw21 � w22 � hw

2
1 � w22iÞ

2
i

¼ hðw21 � w22Þ
2
i � hw21 � w22i

2

¼ N2
ch3 þ 2Nch3 �N2

ch3 ¼ 2Nch3

¼ 2Nch � 2Nch2. ð78Þ

6.3. Set–subset variance for the ðg� 2Þ frequency: o versus

energy threshold

For systematic studies, we also compare the results of
parameter optimization for the full set of data and for
subsets corresponding to separate energy ranges. In
general, the phases and asymmetries for the two sets are
different, as shown in Section 1. The time distribution for
such energy-range subsets has the same starting time ts,
ending time tmax and total number of histogram channels
Nch as the full set, but fewer counts in the channels:
Nn2pNn1. As before, we use subscripts 1 and 2 for the full
set and subset, respectively, and subscript 3 for the
complementary subset, such that

Nn1 ¼Nn2 þNn3. (79)
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We expect the time distribution for an energy-range subset
of our data to follow the same functional form as the
distribution for the full set (i.e. GðtÞ from Eq. (2)),
with some parameters having different ‘‘true’’ values
for the full set and subset. We shall refer to the para-
meters which depend on the energy range as set–subset

variant parameters, and those having the same ‘‘true’’
values, as set–subset invariant. For the muon ðg� 2Þ
data analysis, fit parameters N�, A and f are set–subset

variant while t and o are set–subset invariant para-
meters. We note that the total number of events (decay
electrons) and the statistical errors are set–subset variant

quantities.
We wish to derive a general equation for the set–subset

variance of a given set–subset invariant fit parameter, where
the full data set has been divided into energy-range subsets.
For that we consider a multi-parameter w2 fit in which one
of the fit parameters, say xi, is set–subset invariant and all
others are, in general, set–subset variant. We denote the
function to fit the full set of data as f 1 and that to fit the
subset as f 2, meaning

hNn1i ¼ f ðx�; tnÞ1 
 f �1

and

hNn2i ¼ f ðx�; tnÞ2 
 f �2 (80)

in the same fashion as in Section 2. We also introduce
function f 3 
 f 1 � f 2, which is easily shown to fit the
complementary subset:

f ðx�; tnÞ3 ¼ f ðx�; tnÞ1 � f ðx�; tnÞ2 ¼ hNn1i � hNn2i

¼ hNn1 �Nn2i ¼ hNn3i. ð81Þ

Since parameter xi is set–subset invariant by assumption,
the ‘‘true’’ value x�i is the same for the full set ðx1iÞ and for
the subset ðx2iÞ. Therefore, using Eq. (13) we have

x1i � x2i ¼ ðx1i � x�iÞ � ðx2i � x�iÞ ¼ Dx1i � Dx2i

¼
X

j

ðA�11 Þij

X
n

f 0j

f �

 !
1

ðNn � f �Þ1

�
X

j

ðA�12 Þij

X
n

f 0j

f �

 !
2

ðNn � f �Þ2

¼
X

j

X
n

ðA�11 Þij
f 0j

f �

 !
1

� ðA�12 Þij
f 0j

f �

 !
2

" #

�ðNn � f �Þ2 �
X

j

X
n

ðA�11 Þij
f 0j

f �

 !
1

ðNn � f �Þ3

ð82Þ

and hx1i � x2ii ¼ 0 (provided hNn2 � f �2i ¼ hNn3 �

f �3i ¼ 0Þ as expected. Thus the energy-range set–subset
variance of xi is simply hðx1i � x2iÞ

2
i, which is found by
averaging Eq. (82) squared:

hðx1i � x2iÞ
2
i ¼

X
jk

f �2 ðA
�1
1 Þij

f 0j

f �

 !
1

ðA�11 Þik
f 0k
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1
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f �
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1
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2

ðA�12 Þik
f 0k
f �

� �
2

#

þ
X
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f �3ðA
�1
1 Þij

f 0j

f �

 !
1

ðA�11 Þik
f 0k
f �

� �
1

¼ s21i þ s22i �
X

jk

ðA�11 ÞijðA
�1
2 Þik

�
X

n

f 0j1f 0k2 þ f 0j2 f 0k1

f �1
. ð83Þ

For the case of a one-parameter fit, Eq. (83) reduces to

hðx1 � x2Þ
2
i ¼ s21 þ s22 � 2s21s

2
2

X
n

f 01 f 02
f �1

. (84)

For the muon ðg� 2Þ data analysis, we choose ts ¼ �t and
use the simpler Eq. (84) to find the energy-range set–subset
variance of o. First, we calculate the only unknown term in
Eq. (84),

P
n

f 01f 02
f �1
¼
P

n
qG1

qo
qG2

qo
1

G1
:

X
n

qG1

qo
qG2

qo
1

G1

�

Z 1
�t

N�2A1A2t2e�t=t sinðotþ f1Þ sinðotþ f2Þ

1þ A1 cosðotþ f1Þ

dt

b

�
N�2A1A2 cosðf1 � f2Þ

2b
t3e

¼
A1

A2
cosðf1 � f2Þs

�2
2o . ð85Þ

Here we use the equation for 1=b:

1

b
¼

N2R
G2 dt

¼
N2

N�2te
(86)

to cancel N�2, and also replace N2A
2
2t

2=2 by s�22o . Then for
the energy-range set–subset variance of o we have

hðo1 � o2Þ
2
i ¼ s22o � s21o 2

A1

A2
cosðf1 � f2Þ � 1

� �
. (87)

We note that if A1 ¼ A2 and f1 ¼ f2, then hðo1 � o2Þ
2
i ¼

s22o � s21o as in Eq. (67) for this set–subset variance.

7. Bias of the fit parameters in a w2 minimization fit

In Sections 2.2 and 2.3 we saw that the values of the fit

parameters obtained in a minimization of w2 ¼
P

n
ð f�NnÞ

2

f
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are statistically shifted with respect to the ‘‘true’’ values x�i
by some Dxi : xi ¼ x�i þ Dxi, and that these shifts give rise

to the statistical errors of the fit parameters s2i 
 hðDxiÞ
2
i

and correlations hDxi Dxji.In this section we investigate

another important quantity, namely the systematic bias of
the fit parameters, which is nothing more than an ensemble
average of the shift: hDxii. In particular, it will be shown
that if fits are made to data which are divided into a
sufficient number of equivalent subsets, then the overall
error will increase significantly.

In order to determine the bias, we rewrite Eq. (12) for the
w2 minimization requirement in more detail:

0 ¼
1

2

qw2

qxi

¼
X

n

f 0i
f

f �Nn �
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2

ð f �NnÞ
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j
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2

X
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f 00jkDxj Dxk
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2

ðf � �Nn þ
P

j f 0jDxj þ � � � Þ
2

f � þ � � �

!#
ð88Þ

and search for a solution in the form of successive
approximations Dxi ¼ Dx�i þ Dx1

i þ � � � with the leading
approximation being

Dx�i ¼
X

j

ðA�1Þij
X

n

f 0j

f �
ðNn � f �Þ (89)

as in Eq. (13). Since hNn � f �i ¼ 0, the ensemble average of
Dx�i vanishes. For the next-to-leading term Dx1

i , which is of
second order in ðNn � f ðx�; tnÞÞ=Nn, we have the equation
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which has the solution

Dx1
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The systematic bias in the pth fit parameter from a w2

minimization is given by the ensemble average of Eq. (91). In
the averaging, the first and third terms in square brackets
cancel the second and fourth terms, respectively, and the
seventh and eighth terms partially cancel each other. The net
result is

hDxpi ¼ hDx1
pi ¼ �
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2

X
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f 2
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. ð92Þ

For the case of one-parameter fit, Eq. (92) gives

hDxi ¼ �
1

2
s4x
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f 0f 00
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þ

1

2
s2x
X

n

f 0

f �
�
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2
s4x
X

n

f 03

f 2
�

. (93)

7.1. Bias on the fitted muon ðg� 2Þ frequency

Let us estimate the bias on o in the case that the data are
divided into a number of subsets before fits to function GðtÞ

are performed. As before, we set the histogram start time at
�t, which makes all parameters statistically independent,
and allows the use of Eq. (93). Replacing sums by integrals,
for the three terms in Eq. (93) we have
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where ðtmax þ tÞ=b ¼ Nch�3600 is the typical number of
histogram channels;

hDoi3 �
1

2

ffiffiffi
2
p

tA
ffiffiffiffiffi
N
p

 !4

�
NR1

�t N�e�t=t½1þ A cosðotþ fÞ�dt

�

Z tmax

�t

ðN�e
�t=tAt sinðotþ fÞÞ3

ðN�e�t=t½1þ A cosðotþ fÞ�Þ2
dt

�
2

t4AN
�

1

et
�

3

4o
½�e�t=tt3 cosðotþ fÞ�

				
tmax

�t

�
3

2ot2AN
. ð96Þ

Because of the factor Nch�3600 in its numerator, hDoi2,
the second term in Eq. (93), is dominant. The ratio of the
bias hDoi � hDoi2 to the statistical uncertainty so is

hDoi
so
¼

Nch

ot2AN
�

ffiffiffi
2
p

tA
ffiffiffiffiffi
N
p

 !�1
¼

Nch

ot
ffiffiffiffiffiffiffi
2N
p . (97)

For a data set consisting of N�106 decay electrons, we
have hDoi=so ¼ 0:03, for N�109hDoi=so ¼ 10�3, etc.
These are negligible, of course. However, if for technical
reasons, for systematic studies, etc., the whole data set has
to be divided into Ndiv equal parts and then fit separately,
the weighted average being used as a final result, then the
bias-to-so ratio is enhanced by a factor of Ndiv. Therefore,
in order to keep the bias below the statistical uncertainty,
one may divide the entire data set in no more than
so=hDoi ¼ ot

ffiffiffiffiffiffiffi
2N
p

=Nch equal parts. For the typical data
set of 109 registered decay electrons, the whole data set may
be divided into no more than 1000 equal parts.

7.2. Possible improvement of the w2 fit

In this section we show that the dominant (second) term
in the expression for the bias on o (Eqs. (94)–(96)) is
typical for an arbitrary fit function, and discuss ways to
eliminate it. The three terms in Eqs. (94)–(96) for the bias
of fit parameters can be estimated in the general case as
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where C�;Cs;C12;C1 and C3 are some functions of
parameters of the fit function f. The dimensionless
combinations of these functions in Eqs. (98)–(100) contain
no ‘‘amplitude’’ parameters (like N� for the five-parameter
fit function GðtÞ). Instead, because they contain only
‘‘shape’’ parameters (like t;A;o and f for GðtÞ), they are
typically of the same order, as in the case of Eqs. (94)–(96).
Thus the hDxi2 term, having a large extra factor Nch, is
expected to be dominant for any fit function.
All the same, the bias in the fit parameters can be

reduced and the quality of the fit, improved. We rewrite
Eqs. (92) and (93) as
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and

hDxi ¼ �
1

2
s4
X

n

f 0f 00

f �
þ Zs2

X
n

f 0
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� Zs4

X
n

f 03

f 2
�

(102)

with Z ¼ 1
2. We recall that in our definition of w2 in

Section 2, we use the equation s2n ¼ f ðx; tn) to determine
the variance s2n of the number of counts in the nth channel
of the histogram. It can be shown (see for instance
Ref. [10]) that for a w2 fit with s2n ¼Nn the bias of fit
parameters is also given by Eqs. (101) and (102), but now
with Z ¼ �1. Moreover, the bias for the log-likelihood
fit, which may be considered as a minimization of the
function F:

F 

X

n

Nn ln
Nn

f
þ f �Nn

� �
(103)

is also given by Eqs. (101) and (102), with Z ¼ 0. Thus the
second terms in Eqs. (101) and (102), which are dominant
in the case of the w2 fit, are zero in the case of the log-
likelihood fit. In the case where the full data set is divided
into many equal subsets, we should expect the parameters
determined by the likelihood method to be relatively free
from bias. Moreover, the bias of the w2 fit with s2n ¼ f is
less than that with s2n ¼Nn by a factor of �2. The
troublesome second term can be eliminated by simply
combining the two w2 fits in the proportion �2 : 1. In
Ref. [10] we present this and several other ways to improve
the quality of the w2 fit to the level of the log-likelihood fit.
Perhaps, the most simple of them is to use a ‘‘corrected’’ w2
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function, which we define as

w2corr 

X

n

ð f �NnÞ
2

Nn

�
2

3

ð f �NnÞ
3

N2
n

 !
. (104)

The function w2corr is nothing but the first two terms of
Taylor’s expansion of the function F from Eq. (103) in a
power series of ðf �NnÞ=Nn.

N.B.: The improvement of the w2 fit, as discussed in this
section, is relevant only in special cases, like that discussed
in Section 7.1 where the data have to be divided into many
parts. Otherwise, the w2 fit generally works perfectly well.
In particular, w2 and log-likelihood fits to our time spectra
give virtually identical results, well within statistical errors.
Given that the maximum likelihood fit takes considerably
more computer time, we use w2 minimization for most of
our fits.

8. Weighting method

The conventional approach used in data analysis for the
Brookhaven experiment was to fit the spectra of the
number of events above a given energy threshold versus
time. In this section we study the advantage of weighting
the entries in the time histogram by some function of the
measured energy of decay electrons, in order to reduce the
statistical error on the fitted value of o.

As mentioned above, the electron decay asymmetry, A, is
a function of electron energy. If y ¼ E=Emax is the relative
energy, then the number of events (or probability density)
and the asymmetry as functions of y are given in Eqs. (105)
and (106):

nðyÞ ¼ 1
3
ðy� 1Þð4y2 � 5y� 5ÞenðyÞ (105)

AðyÞ ¼
�8y2 þ yþ 1

4y2 � 5y� 5
eAðyÞ (106)

respectively. The effects of detector acceptance (including
finite energy resolution) are accounted for by enðyÞ and
eAðyÞ. The functions nðyÞ and AðyÞ are plotted in Fig. 4 for
the case of en ¼ 1 and eA ¼ 1. We note that in this caseZ 1

0

nðyÞdy ¼ 1 and

Z 1

0

nðyÞAðyÞdy ¼ 0. (107)

In the following we assume that nðyÞ is normalized as in
Eq. (107)

Earlier we showed, that if we include only decay
electrons of energy greater than Ethr in our analysis, a
threshold of roughly 1.8GeV (which maximizes NA2) will
minimize the statistical error. In practice, the detector
system records electrons with y as small as 0.2, so that the
lower part of the spectrum has an asymmetry opposite in
sign to the high-energy one. Direct inclusion of those
decays would decrease the average value of NA2 and
thereby increase the statistical error. We would clearly
do better to assign negative weights to the low-energy
events. More generally, we can introduce some weight
function pðyÞ and consider a modified probability density
function (pdf).
Now the two-dimensional (time t and relative energy y)

pdf for Gðt; yÞ is

Pðt; yÞ ¼
Gðt; yÞR1

�t

R 1
0 Gðt; yÞdy dt

�
nðyÞ

te
e�t=tð1þ AðyÞ cosðotþ fÞÞ. ð108Þ

For convenience we consider the binned pdf, Pmq, where
the first subscript refers to the time bin and the second one
to the energy bin:

Pmq ¼
nq

te
e�tm=tð1þ Aq cosðotm þ fÞÞbybt

¼
bybt

te
e�tm=tðnq þ nqAq cosðotm þ fÞÞ. ð109Þ

Here the corresponding bin widths bt and by are explicitly
included. MultiplyingPmq by the total number of events N,
one gets the expected number of events in the ðm; qÞth bin.
Summing up all such events over a threshold qthr

(corresponding to ythr) for fixed m, one gets the number
of events in the mth channel of the time distribution:

Nm 

X

q4qthr

NPmq

¼ N
btby

te
e�tm=tð1þ hAiy cosðotm þ fÞÞ ð110Þ

where

hAiy 


P
q4qthr

nqAqP
q4qthr

nq

(111)

is the average asymmetry, A, for events with energy above
the threshold ythr. In the conventional analysis, the
distribution in Eq. (110) is fit with the five-parameter
function GðtÞ.
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Now, for a weighted pdf we have

Pmqpq ¼ pq

btby

te
nqe
�tm=tð1þ Aq cosðotm þ fÞÞ

¼
btby

te
e�tm=tðnqpq þ nqpqAq cosðotm þ fÞÞ ð112Þ

and the content3 of the mth time bin is

Np
m 


X
q4qthr

NPmqpq ð113Þ

¼ N
btby

te
e�tm=tðhpiy þ hpAiy cosðotm þ fÞÞ. ð114Þ

This time distribution may be fit with the five-parameter
function:

f ðtÞ ¼ e�t=tðC þ A cosðotþ fÞÞ (115)

where, as compared to function GðtÞ, we remove the overall
normalization parameter N� in favor of the offset C

because it better handles the situation where C ¼ hpiy � 0.
Next, we need to evaluate the statistical error for the mth

channel of the time distribution given in Eq. (114). We
rewrite Eq. (113) to show the statistical fluctuations of all
terms in the sum explicitly:

Np
m ¼

X
q4qthr

NPmqpq ¼
X

q4qthr

ðNPmq �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NPmq

p
Þpq (116)

and obtain the statistical error for Np
m:

s2m 
 hN
p2
m i � hN

p
mi

2 ¼
X

q4qthr

NPmqp2
q ð117Þ

¼ N
btby

te
e�tm=t½hp2iy þ hp

2Aiy cosðotm þ fÞ�. ð118Þ

Now we construct the w2 function as in Eq. (4) and,
following the steps outlined in Section 2.2, derive the
equation for the error matrix:

hDxi Dxji ¼ ðA
�1Þij where Aij ¼

X
m

f 0i f 0j

s2m
(119)

which is actually the same as in Eqs. (17) and (14)
respectively.4 Then we replace the sum in Eq. (119) by an
integral, diagonalize the matrix A with the choice of
histogram start time ts ¼ �t, and calculate the correspond-
ing diagonal matrix element for the fit parameter o, which
is in our case s�2o :

s�2o ¼
N

te

Z 1
�t

t2e�t=thpAi2y sin
2
ðotþ fÞ

hp2iy þ hp
2Aiy cosðotþ fÞ

dt �
NhpAi2yt

2

2hp2iy
.

(120)

For a practical implementation of the weighting method,
we form a histogram as a function of m (time) by summing
NPmq over some chosen subset of the energy, q, in
Eqs. (113) and (117). Then we fit the resulting distribution
with GðtÞ, or with the function given in Eq. (115), and
3Here it is a weighted sum of events, thus not integer in general.
4We note that Eq. (119) forAij is more general than Eq. (14) because s2m

is, in turn, more general than s2m ¼ f � in Eq. (14).
obtain fit values and statistical errors for o and other fit
parameters.

8.1. Weighting with pðyÞ ¼ AðyÞ and pðyÞ ¼ y

In our experiment, we use two weighting functions:
pðyÞ ¼ AðyÞ and the conventional pðyÞ ¼ 1. Fig. 5 shows the
figure of merit s�2o (in relative units) as a function of energy
threshold for these weighting functions and also for the
case pðyÞ ¼ y. Of these, it is evident that the weighting
method with pðyÞ ¼ AðyÞ gives the best statistical precision
for o. It is, in fact, the best weighting method, as shown in
the next section. Using the asymmetry weighting with an
energy threshold of ythr�0:3 reduces the statistical error on
o by 10% or more.
Another virtue of the pðyÞ ¼ y weighting method is that

it can substantially reduce systematic errors caused by pile-

up, when two decay electrons of fractional energies y1 and
y2, respectively, are detected simultaneously (i.e. piled-up)
and are counted as a single electron of energy y ¼ y1 þ y2.
The pile-up contribution to the energy dependent time
spectrum can be described by the equation:

f puðt; yÞ ¼
1

2

Z y

0

Pðt; y0ÞPðt; y� y0Þdy0
� �

� Pðt; yÞ

Z 1

0

Pðt; y0Þdy0
� �

ð121Þ

where the first term is the probability of two events at
energies y0 and y� y0 to pile-up and form an event
at energy y. The second term is the probability of an event
at energy y to pile-up with any other event and thus no
longer contribute to the distribution at an energy y. With
the help of the characteristic function of the pdf one may
verify thatZ 2

0

yf puðt; yÞdy ¼ 0 (122)
Fig. 5. Figure of merit s�2o as a function of energy threshold ythr ¼

Ethr=Emax for the case en ¼ 1 and eA ¼ 1. The ML weighting refers to the

optimal case which follows from a maximum likelihood argument in

the text.
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and hence the pile-up contribution vanishes (for ythr ¼ 0)
or is greatly reduced using a weight pðyÞ ¼ y. If the
acceptance parameters eN and eA are both equal to 1, all
particles would be accepted and the energy-weighted
asymmetry would be small. However, the detectors are
designed so that the acceptance is low for low-energy
electrons and high for high-energy electrons, and in this
circumstance, the energy-weighting works reasonably well.

8.2. Cramér–Rao bound for the five-parameter distribution

GðtÞ

The theoretical lower limit for the precision of a single or
non-correlated fit parameter for a given event distribution
(e.g. parameter o for the time–energy distribution Pðt; yÞ if
the histogram start time is chosen to be �t) is set by the
Cramér–Rao limit [11]:

1

s2o
p

dlnL

do

� �2
* +

pdf

or; equivalently;
1

s2o
p�

d2 lnL

do2


 �
pdf

ð123Þ

where lnL is the (unbinned) log-likelihood function, and
averaging over the pdf (or over collected events) is
assumed. Thus, the lowest bound corresponds to the
maximum likelihood method.

Since the probability of a particular, kth, event is

Lk ¼
nðykÞ

te
e�tk=tð1þ AðykÞ cosðotk þ fÞÞ (124)

the total log-likelihood function is

lnL ¼
XN

k¼1

lnLk ¼
XN

k¼1

ln nðykÞ �N ln t�N �
XN

k¼1

tk

t

þ
XN

k¼1

lnð1þ AðykÞ cosðotk þ fÞÞ. ð125Þ

Applying Eq. (123) we have

1

s2o
p

dlnL

do

� �2

¼
XN

k¼1

t2kA2ðykÞ
sinðotk þ fÞ

1þ AðykÞ cosðotk þ fÞ

� �2

�
1

2

XN

k¼1

t2kA2ðykÞ 

N

2
ht2A2it;y ¼

N

2
t2hA2iy ð126Þ

where in the last step we use the fact that asymmetry is not
time-dependent, and as before, t2 is the average value of t2

in the range �t to infinity.
Thus for the figure of merit, s�2o , we obtain

s�2o ¼
1
2
Nt2hA2iy (127)

as the Cramér–Rao lower bound for our case. By
comparison, the s�2o value obtained in Section 3 for the
classical method, p ¼ 1, may be written as

s�2o ¼
1
2
Nt2hAi2y (128)
where hAiy is the decay electron asymmetry averaged over
electrons above the energy threshold, y4ythr. Since
hAi2yohA

2iy, the classical method is not optimal. The
weighting method with weight function pðyÞ ¼ AðyÞ, on the
contrary, gives rise to the combination hA2iy:

s�2o ¼
1

2
Nt2
hpAi2y

hp2iy
¼

1

2
Nt2hA2iy (129)

see Eq. (120), and hence reaches the Cramér–Rao limit.
The optimal weighting is uniquely given by asymmetry
weighting. The result does not depend on the particular y

dependence of nðyÞ or AðyÞ, which are taken from the data.

9. The ratio method—a new method of extracting the

anomalous precession frequency

In the ratio method, the full data set is randomly split into
four independent subsets of equal size. The corresponding
time spectra from the four subsets are combined so that the
exponential decay of the muon and the overall normalization
are effectively divided out; the resulting spectrum is fit for the
amplitude, frequency and phase of the ðg� 2Þ oscillation. An
advantage of the ratio method is that, like the exponential
decay itself, any slowly varying multiplicative distortion of
the spectrum will be much reduced.
The three-parameter ratio fitting function rðtÞ is derived

from the five-parameter function GðtÞ. We introduce the
functions

uþðtÞ /
1
4
Gðtþ T=2Þ ¼ 1

4
N�e

�t=te�T=2t

�½1� A cosðotþ fþ 1
2
odT Þ� ð130Þ

u�ðtÞ /
1
4
Gðt� T=2Þ ¼ 1

4
N�e

�t=teT=2t

�½1� A cosðotþ f� 1
2
odT Þ� ð131Þ

v1ðtÞ /
1
4
GðtÞ ¼ 1

4
N�e

�t=t½1þ A cosðotþ fÞ� (132)

v2ðtÞ /
1
4
GðtÞ ¼ 1

4
N�e

�t=t½1þ A cosðotþ fÞ� (133)

which describe the four statistical data sets shifted in time
by either one half of a ðg� 2Þ period ðu�Þ, or not shifted
ðv1;2Þ. Here the fixed parameter T is the nominal ðg� 2Þ
period, known a priori (e.g. from previous experiments) to
5–10 ppm accuracy, which is sufficient in this application.
The difference from the true value is given by dT .
The function rðtÞ is constructed as

rðtÞ ¼
v1ðtÞ þ v2ðtÞ � uþðtÞ � u�ðtÞ

v1ðtÞ þ v2ðtÞ þ uþðtÞ þ u�ðtÞ
. (134)

It can be simplified by the use of successive approximations
on small parameters ðT=4tÞ2 ¼ 288 ppm and odT=2 ¼
p� 10 ppm ¼ 31:4 ppm. Keeping terms greater than
0.1 ppm, we have

rðtÞ ¼ �A cosðotþ fÞ þ
T

4t

� �2

�
T

4t

� �2

A2 cos2ðotþ fÞ.

(135)
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In fact, once the last term was shown to have a negligible
effect on the fitted value for o, the three-parameter
function

rðtÞ ¼ �A cosðotþ fÞ þ 2:88� 10�4 (136)

was used instead.
We note that, if the weighting of the counts in the

histograms were uþ : u� : v1 : v2 ¼ eT=2t : e�T=2t : 1 : 1 in-
stead of 1 : 1 : 1 : 1, then the last two terms in Eq. (135)
would be eliminated but, as mentioned, the approximations
of that equation are sufficiently good for this case.

The statistical fluctuation of rðtnÞ is driven by the
statistical fluctuations of v1;2ðtnÞ and uþ�ðtnÞ:

s2v1 ðtnÞ ¼ v1ðtnÞ; s2v2 ðtnÞ ¼ v2ðtnÞ; s2uþðtnÞ ¼ uþðtnÞ

s2u�ðtnÞ ¼ u�ðtnÞ ð137Þ

giving

s2r ðtnÞ ¼
1� r2ðtnÞ

v1ðtnÞ þ v2ðtnÞ þ uþðtnÞ þ u�ðtnÞ
. (138)

To a good approximation, 1� r2ðtnÞ � 1 and

v1ðtnÞ þ v2ðtnÞ þ uþðtnÞ þ u�ðtnÞ � N�e
�tn=t (139)

therefore s2r ðtnÞ can be written as

s2r ðtnÞ ¼ ðN�e
�tn=tÞ

�1. (140)

The w2 function can be constructed as in Eq. (4) and the
equation for the error matrix is

hDxi Dxji ¼ ðA
�1Þij

where now Aij ¼
X

n

r0ir
0
j

s2ðtnÞ
¼
X

n

N�e
�tn=tr0ir

0
j. ð141Þ

The equations for the matrix elements in Eq. (141) are very
close to the corresponding equations for the fit parameters
A;o and f of the five-parameter fit. Indeed, the matrix A
for the ratio fit method is (to leading order in � ¼ 0:011 and
1
2

A2 ¼ 0:08)

A ¼

N

2
0 0

0
NA2t2

2

ts

t
þ 1

� �2
þ 1

� �
NA2t
2

ts

t
þ 1

� �

0
NA2t
2

ts

t
þ 1

� � NA2

2

2
66666664

3
77777775
(142)

which coincides with the right bottom corner of the matrix
A in Eq. (24) for the five-parameter fit. Thus the equations
for the statistical errors of the fit parameters A, o and f are
given in Eqs. (27)–(29), respectively.

Finally, we note that while slow modulations (Tb
2p
o )

largely cancel in the ratio, fast modulations, such as those
caused the CBO, are not canceled, and must be dealt within
the same way as for the conventional analysis.
10. The folding method

In the folding method, a simple but powerful method of
checking for the presence of a periodic process (period T 0)
in a time distribution, the distribution is cut into time slices
of duration T 0 which are then re-summed. Mathematically,
this is equivalent to the transformation t! t0, where

t0 ¼
t

T 0
� integer

t

T 0

� �
. (143)

As an illustration, in Fig. 6 we give the positron time
distribution from a 1997 ‘‘engineering’’ run [1]. Sharp
background peaks with spacing 2:7ms are clearly seen
together with the ðg� 2Þ oscillations which have a period
of 4:37ms. The 2:7ms peaks were produced by a problem,
later remedied, in extracting protons from the BNL
Alternating Gradient Synchrotron (AGS).
In Fig. 7 the data from the same run are plotted as a

function of t0. Note that t0 varies from 0 to 1, the latter
corresponding to the length of one period, T 0. The highest
peak at t0 ¼ 0:90 corresponds to the 2:7ms structure seen in
Fig. 6. Seven smaller peaks are also clearly seen. All
together, the eight separate peaks correspond to the eight
bunches of protons stored at uniform intervals around the
AGS ring.
The ability to resolve background structure in t0 is very

sensitive to the exact value of the re-summation period T 0

and becomes sharpest for T 0 ¼ 2:694 ms, the true AGS
cyclotron period (the case actually shown in Fig. 7).
Because even a small contamination of these AGS flashlets

can lead to a significant systematic error in o, this
exceptionally sensitive tool was essential to the accuracy
of our result.
The folding method is largely complementary to the

Fourier analysis method. The Fourier method, which we
use extensively for our systematics studies (see Ref. [6]), is
usually superior if one is searching for an unknown
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periodic process. In turn, the folding method has an
advantage for the detection of a process with known
period, especially if the functional form of the process is far
from a pure sine wave. Another important advantage of
the folding method is that the distribution of t0 is a regular
event distribution, fNng, with statistical fluctuations

ffiffiffiffiffiffiffiffi
Nn

p

and with no correlation among different channels. In that
respect, the Fourier transformation plot is more compli-
cated for analysis.

In our search for CPT/Loretz violating oscillation in am

versus sideral time (to be published elsewhere) the limits we
get are the same for w2 and Fourier analyses and for the
folding method.
11. Kolmogorov–Smirnov test

The Kolmogorov–Smirnov compatibility test is a stan-
dard statistical procedure that can be used to determine
whether or not two data sets, consisting of N1 and N2

entries, have the same underlying parent distribution.
From each data set, one constructs a normalized cumula-
tive distribution which grows monotonically from 0 to 1.
These two cumulative distributions are then compared,
point by point. The largest difference between the two, dK ,
is used as a measure of the compatibility of the two
distributions.

It was shown by Kolmogorov [12] that when comparing
two samples from the same parent distribution, dK follows
a distribution which is independent of the parent distribu-
tion. In the limit of infinite data sets, the distribution of dK

is such that the probability of dK to exceed some particular
dK� is given by

PðdK4dK�Þ ¼ 2
X1
k¼1

ð�1Þk�1 exp �2k2d2
K�

N1N2

N1 þN2

� �� �
.

(144)
The sensitivity of this test is not uniform. It tends to be
more sensitive near the median value and to be less
sensitive at the extreme ends of the cumulative distribution.
Several variants that improve the uniformity have been
proposed in Refs. [13,14].
The probabilities for small data sets ðN1;N2p80Þ are

commonly available in tables. In general, they can be
generated using a Monte Carlo technique which simulates
statistical fluctuations of otherwise identical distributions.
In our experiment, we mostly used the Kolmogorov–

Smirnov test and its variants for selection or rejection of
decay electron/positron data, which come in separate short
runs (104–105 events) and from separate detectors. Runs
were rejected when data from a large number of detectors
showed low probability ðPo10�2Þ. Likewise detectors were
rejected when their data had Po10�2 for a sequence of
runs. The probability distribution of accepted data was
uniform. In addition, an effective detector gain correction
procedure based on the Kolmogorov–Smirnov test was
developed.
There are several advantages of the Kolmogorov–Smir-

nov test. The parent distribution does not need to be
known, which reduces the possibility that some bias to the
derived value of o could be introduced by the data sample
selection. In addition, the test does not involve any fits or
iteration procedures, nor does it require the data to be
binned.
12. Conclusions

In this paper, we have described some of the basic
statistical ideas which have been applied to the analysis of
the muon ðg� 2Þ data. We have obtained equations for
statistical errors, correlations of fit parameters and other
properties of a w2 fit of the muon ðg� 2Þ time spectra.
These include
	
 statistical errors and correlations of fit parameters;

	
 reducing the uncertainty on fit parameters by incorpor-

ating additional knowledge, such as external knowledge
of the precession phase;

	
 systematic shifts of fit parameters due to neglected

background;

	
 comparisons of fit parameters obtained from fitting the

full set of data versus some subset of the data (set–subset
relations);

	
 systematic biases of the fit parameters from a w2

minimization procedure and bias reduction techniques;

	
 optimizing the statistical power of the data by weighting

individual events by energy or asymmetry;

	
 the ratio method, in which the muon decay is effectively

removed thus simplifying the fit for o;

	
 the ‘‘folding’’ method for detecting a periodic back-

ground process in a time distribution;

	
 the Kolmogorov–Smirnov histogram compatibility test,

which we used extensively in the screening of data runs.
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The results obtained in this study, as well as the more
general statistical equations included in this paper, can be
applied to fits obtained in many kinds of experiments, but
particularly those with periodic signals.

Similar studies may be found in literature. For instance,
Refs. [15,16] explicitly deal with the bias of least-squares
fits to Poisson distributed data and present solutions like
maximum likelihood estimation based on Poisson statistic
[15] or other alternatives [16]. Ref. [17] shows that the
uncertainty derived from a least squares is rather mean-
ingless if the fitted function does not rigorously apply to
the data. The ‘‘long-term effects’’ in Ref. [17] seem related
to Section 5 of this paper (‘‘systematic shift due to
neglected background’’).
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Appendix

Here we calculate the ensemble average of ðw2Þ2, which is

hðw2Þ2i ¼
X

n

X
m

hðNn � f �Þ
2
ðNm � f �Þ

2
i

ð f �Þnðf �Þm

� 2
X

ij

Aij Dxi Dxj

X
n

1

f �
ðNn � f �Þ

2

* +

þ
X
ijpq

AijApqhDxi Dxj Dxp Dxqi ð145Þ

as it follows from Eq. (20). The average of ðNn � f �Þ
2

ðNm � f �Þ
2 in the first term in Eq. (145) is equal to

ð f �Þnð f �Þm for the case nam, while for the case n ¼ m we
have hðNn � f �Þ

4
i ¼ f � þ 3f 2

�, see Eq. (10). Thus for the
first case we have

X
nam

X
m

hðNn � f �Þ
2
ðNm � f �Þ

2
i

ðf �Þnð f �Þm

¼
X

n

hðNn � f �Þ
2
i

f �

 !2

�
X

n

hðNn � f �Þ
2
i2

f 2
�

ð146Þ

and for the second case

X
n¼m

X
m

hðNn � f �Þ
2
ðNm � f �Þ

2
i

ð f �Þnð f �Þm
¼
X

n

hðNn � f �Þ
4
i

f 2
�

(147)

and hence

X
n

X
m

hðNn � f �Þ
2
ðNm � f �Þ

2
i

ð f �Þnð f �Þm

¼
X

n

hðNn � f �Þ
2
i

f �

 !2

�
X

n

hðNn � f �Þ
2
i2

f 2
�

þ
X

n

hðNn � f �Þ
4
i

f 2
�

¼
XNch

n¼1

1

 !2

�
XNch

n¼1

1þ
XNch

n¼1

1

f �
þ
XNch

n¼1

3

 !

¼ N2
ch þ 2Nch ð148Þ

where in the last step we neglect the term 1=f �51.
In the second term in Eq. (145), the combination of

Dxi Dxj gives a non-vanishing contribution only when in
the decomposition

Dxi Dxj ¼
X

pq

ðA�1ÞipðA
�1Þjq

X
v

f 0p

f �
ðNv � f �Þ

�
X

w

f 0q

f �
ðNw � f �Þ

indices v and w are equal. Therefore

X
ij

Aij Dxi Dxj

X
n

1

f �
ðNn � f �Þ

2

* +

¼
X
ijpq

AijðA
�1ÞipðA

�1Þjq

X
v

X
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f 0p f 0q
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� �
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where in the second-to-last step we neglect the term
f 0p f 0q

f 2�
as

being of relative order 1=f �51.
Now evaluate the last term in Eq. (145):X

ijpq

AijApqhDxi Dxj Dxp Dxqi

¼
X
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þ 2hðNn � f �Þ
2
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4
i�

¼
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þ
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�1Þcd

X
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f 4
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ð�3f 2
� þ f � þ 3f 2
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¼ L2 þ 2Lþ
X
abcd

ðA�1ÞabðA
�1Þcd

X
n

f 0a f 0b f 0c f 0d

f 3
�

� L2 þ 2L. ð150Þ

In the last step we neglect the term
f 0a f 0b f 0c f 0d

f 3
�

, which is of

order 1=f �51. Finally, for hðw2Þ2i in Eq. (145) we have

hðw2Þ2i ¼ ðN2
ch þ 2NchÞ � 2ðNchLþ 2LÞ þ ðL2 þ 2LÞ

¼ N2
ch � 2NchLþ L2 þ 2Nch � 2L. ð151Þ
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