

Square Pore Optics

Industrial and Scientific Detectors ISD

Brive, 12 Dec. 2007

Square Pore Optics

- Introduction
- Production
- Applications
 - Space: X-ray focussing
 - Laboratory
- Competitors
- Gogogo ...

Brive, 12 Dec. 2007

Square Pore Optics

MPO = Micro Pore Optics (historical name but confusing)

MCP

PHOTONIS

MPO (20 µm Square Pores)

SEM-picture Brive, 12 Dec. 2007 Optical microscope picture (old) E.Schyns, MCP Product Managment

PHOTONIS Square Pore Micro OptiX

New technology development by PHOTONIS (€ supported by European Space Agency) Square Pore Micro Channel Plates

PHOTONIS µ Pore OptiX : MuPOX

Distant object
Curved ("slumped") Microchannel plate

Screen or detector

Brive, 12 Dec. 2007

PHOTONIS Operation of an MCP X-ray Lens

PHOTONIS Micro Pore OptiX : MPOX

Focussing / Imaging

Make parallel output-beam:

 $I_{source} = \frac{1}{2} R_{slump}$

Focus (quasi)-parallel beam into a spot: $I_{spot} = \frac{1}{2} R_{slump}$ Brive, 12 Dec. 2007E.Schyns, MCP Product Managment

MCP X-ray image quality

Brive, 12 Dec. 2007

Brive, 12 Dec. 2007

PHOTONIS Square Pore µ-OptiX

focusing X-rays by reflection off the inside surfaces of square channels

Imagine channel plates as collection of millions of little "micro-mirrors" :

- compact
- low mass
- relatively cheap

PHOTONIS Square Pore OptiX: SPOX?

The old technology: Concentric gold plated cylinders focus / reflect X-rays onto a detector

Mirrors for XMM Space project

Brive, 12 Dec. 2007

PHOTONIS Micro Pore Optics / MPO

NEW vs OLD TECHNOLOGY

	XMM	SPO
WEIGHT	<mark>350 kg</mark>	29 g
DIAMETER	700 mm	60 mm
Platform	910 Kg/m²	10 Kg/m ²

Brive, 12 Dec. 2007

PHOTONIS The production process

Square-Pore-Square-Pack

(Square MF stacking)

Or

Square-Pore-Radial-Pack

(Radial MF stacking) More difficult to make (>€) but better optical (focal) properties

Brive, 12 Dec. 2007

E.Schyns, MCP Prod

THE DRAWING PROCESS

drawing tower automatic fibre or multifibre "kickers"

Automatic fibre and — multi-fibre monitor

Brive, 12 Dec. 2007

THE STACKING PROCESS

Square stacking of

square multifibres

(square-pore square-pack)

Stacking with video and software for quality control

Brive, 12 Dec. 2007

PHOTONIS

Micro Mirror Optics

- At high photon energies i.e. very short λ , scattering from surface roughness is an important source of loss Currently we make channel roughness ~5 nm rms
- **ETCHING CORE TECHNOLOGY**
- → need small angles of incidence (< 2°)
- → allow the rays to strike (graze) the surface
- → the channels have to be long

NEED HIGH L/D RATIO i.e. the larger L/D the better (also allowing X-rayFLECTION with higher energies ...)

PHOTONIS

PHOTONIS µ Mirror OptiX

The resolution will be mainly due to: The geometrical quality of the OptiXs The roughness of the channel's inner surface

Main parameters

- Size of the holes (pore size, length, L/D)
- Geometry of the channels (fibers, multi-fibers)
- Stacking, channel's alignment
- Material reflectivity (special glass)
- Inner surface roughness

Square Pore µ-OptiX

Applications

PHOTONIS

- Scientific / Space applications
- Laboratory applications
- X-ray lithography

(image from visible light)

Square Pore µ-OptiX

SCIENTIFIC APPLICATIONS:

SPACE

- X-ray domain
- Deep UV (XUV / EUV)

OptiX made by PHOTONIS

(ESA / ESTEC contract)

Brive, 12 Dec. 2007

Lobster – mission in X-ray Astronomy PHOTONIS

PHOTONIS The ISS as a platform for All Sky Monitoring

Tilt: 30° forward of zenith Total field: 162°x 22.5°

Field sweeps sky every 90 minute orbit.

Rotation Axis

31

PHChrobitiss and XMM-Newton : The impact of novel,

Mission Bepi-Colombo (ESA) Launch in 2011?

TARGET: Analyses of Mercury surface (X-ray spectroscopy)

- * Why close to the sun ?
- * Why core is big (80% of the mass) ?
- * Why Mercury has a magnetic field ?
- * Ice on the pole of Mercury ?

Mercury

On it's way to Mercury, passes by the Moon & Jupiter: switch on?

Brive, 12 Dec. 2007

Square Pore µ-OptiX

Detailed MIXS-T optic design Input to Breadboard development project ESA / Photonis / cosine-Research collaboration

6 sectors of 1-2-3 doublets

 $R_{slump} 1 = 4 m$

R_{slump} 2 = 1.3 m

Brive, 12 Dec. 2007

Demonstration of enhanced X-ray reflectivity at 2.5 keV for Iridium-coated MCP

Other coatings possible: Au, Ni

(difficult to get metal all the way in the channels)

Brive, 12 Dec. 2007

Mission Auroral Imager (ESA)

- Idea from University of Leicester to measure the interactions between particle flux and earth magnetic field at the poles.
- Same optics as Lobster programme.

TELESCOP X with 5 modules

Brive, 12 Dec. 2007

Applications In the laboratory

- Material test and quality control
- X-ray lithography
- XUV lithography
- Medical imaging (decreased dose) !

Applications e.g. X-ray lithography

- The resolution of features on a chip is limited by diffraction from the mask "blurring" the image.
- Diffraction is inversely proportional to λ ,
- Soft X-rays $\lambda \sim 1 \text{ nm}$: no problem
- OptiX turns a diverting X-ray beam from a point-like source into a parallel beam and focuses down to a tiny point

PHOTONIS is the sole provider, i.e.

- can produce large quantities
- special glass composition

Brive, 12 Dec. 2007

Note: the is not Square Pore Optics!

Other examples of applications coming from (outer) space:

Faulkes Spectrograph – measures the precise colours of objects (originally stars) to a high level of precision

, MCP Product Managment

PHOTONIS Applications: From Astronomy to Biology

Goals - large area, high resolution, high efficiency, low background

BIOIMAGING UNIT

E.Schyns, MCP Product Managment

Brive, 12 Dec. 2007

44