

Ultra slow muon generation and applications

P. Bakule (RIKEN) Y. Matsuda (RIKEN) M. Iwasaki (RIKEN)

Former colleagues: R. Scheuermann (PSI) Y. Ikedo (TOYOTA) Y. Miyake (KEK) K. Nagamine (KEK) P. Strasser (KEK) K. Shimomura (KEK) S. Makimura (KEK)

Part 1 : Development of low energy muon source at RIKEN RAL

- Method of low energy muon (LE-μ⁺) generation
- Beam and spectrometer characteristics
- Control over the implantation energy
- Efficiency of LE-μ⁺ generation
- Summary of the current status and comparison with LE-μ⁺ beam at PSI

Part 2 : Laser applications at RIKEN RAL beamlines

- Applications for LE-µ+ beam
- μSR experiments with laser irradiated samples
- Construction of new laser laboratory at Port 2
- Looking back over past 10 years and looking forward to the future laser experiments at RIKEN RAL

µSR with low energy muons

For "**surface muons**" with energy of 4 MeV the stopping range in a solid varies from 0.1 - 1 mm with a straggling of about 20% of the mean value. Beam size 40-50 mm (FWHM)

For "**low energy muons**" with energy 0.01-30 keV the stopping range in a solid varies from 1 - 200 nm. Implantation depth easily controlled on nm scale. Beam size is small 4-5 mm (FWHM)

allows investigations of near-surface regions, thin films, interfaces and multi-layers, nanomaterials and of samples which can be grown only as thin films.
allows to make depth resolved measurements.

Methods of LE-muon generation

1) Cold Moderator Method (@PSI)

- ideal for continuous muon source
- layer of solid rare gas as a moderator
- conversion efficiency up to 10⁻⁵
- 92 % Polarization
- 10-100eV Kinetic Energy
- DC, Requiring a start trigger (->5 ns resolution)
- Time structure determined by initial muon beam

2) Laser Resonant Ionization of Muonium (@RIKEN-RAL)

ideal for pulsed muon source

- 1% efficiency of conversion to thermal muonium i.e. potentially much higher conversion efficiency to LE-muons
- 50 % Polarization reduction
- potentially 0.2eV Monochromatic beam
- Time structure determined by laser pulse
 (~10 ns) synchronized with pulsed muon beam
- external trigger allows synchronisation with sample excitation

Lyman-α generation (sum-difference frequency mixing in Kr gas)

RIKE

• 212.55 nm (single longitudinal mode) tuned to a resonance in Kr - yield resonantly enhanced

• 820 nm (844 nm for H or D) broadband to match Doppler broadening of 200 GHz

 tuneable VUV output ~ 122 nm (with 200 GHz bandwidth)

Short laser pulses required to increase intensity (~4 ns)
 Scheme requires relative timing of all laser pulses ~ 1 ns with external trigger (!)
 ⇒ possible with OPO lasers pumped by YAG

Schematic diagram of the laser system

Solid State Laser parameters:

Pulse duration: 4 ns

Energy: 10-15 mJ /pulse x 2 beams

212.55 nm (single mode, tuned to Kr resonance):

25 Hz operation Output synchronised to 1 ns (!) High stability : 20 days continuous 24/7 operation

Air-conditioned laser cabin 800-880 nm (tunable broadband output) Energy: 25 mJ SLM Nd:YAG laser Nd:YAG laser Pulse duration: 8 ns Continuum Continuum Powerlite 9025 Bandwidth: 160 GHz Powerlite 9025 > 532 nm 532 nm 532 nm 355 nm (multimode output) 850 nm SLM OPO + 2-pass 4-pass energy 380 mJ, 10 ns **Ti:sapphire** Ti:sapphire Ti:Sapphire amp. amplifier amplifier Continuum Mirage 800 RIKEN-RAL Port 3 Experimental area SHG Nd:YAG laser Continuum FHG FHG Powerlite 7025 1 532 nm 212.55 nm Mu OPO + OPA atoms Kr-Ar laser 815-855 nm gas cell Continuum Mirage 3000 Tuneable n n VUV 116-123 nm 355 Nd:YAG laser Continuum UHV Powerlite 9025 355 nm 3×10⁻⁸ hPa

Transport beamline for low energy $\mu^{\!+}$

Laser beam overlap with muonium

µSR setup for LE-muon experiment

$LE-\mu^+$ decay spectrum

Background suppressed below 0.01 counts over 15 μ s period after slow μ^+ arrival.

Background further reduced by subtracting "laser off" events

Background much lower than at continuous muon source -> much wider time window for measurement $10ns - 15\mu s$

Size of low energy muon beam at sample

Measured with Roentdek position sensitive MCP (0.8 mm resolution)

~ 100 times smaller crosssection than incident surface muon beam.

Allows us to measure small samples of 10-20 mm diameter with excellent S/N ratio

Muon implantation with external trigger

Comparison of muonium ionization and cryogenic moderator methods on ISIS pulsed source

- Laser resonant ionization method makes slow muon beam with good timing resolution.
- Time resolution is 7.5 nsec (FWHM). When cryogenic moderator method was used in ISIS, the time resolution was about 100ns.
- Laser ionization allows to trigger LE muon generation by <u>external</u> <u>trigger</u> with nanosecond resolution → synchronization with pulsed fields

LE-µSR: frequency response plot

Measured using muonium spin precession

Muon implantation energy

We have demonstrated that we can control muon implantation range within 10nm resolution by changing energy of LE-muons. \rightarrow provides magnetic probe with depth resolution on nm scale

The LE muons are transported through the LE muon beamline at 9 keV. Muon energy is controlled by applying a potential on the sample in the range of 9.0 kV to -9.0 kV giving control over the **implantation energy in the range of 0 – 18 keV**.

RIKEN

Muon implantation at very low energies

Efficiency of LE muon generation

	RIKEN-RAL	PSI	
	(muonium ionization)	(cryogenic moderator)	
Surface muon beam intensity	1.2x10 ⁶ μ^+ /sec (50 Hz) 6x10 ⁵ μ^+ /sec (25 Hz)	$2x10^8 \ \mu^+/sec$ (new beamline)	
LE μ^+ / intensity at sample	20 µ ⁺ /sec	8000 µ ⁺ /sec	
Overall efficiency	3x10 ⁻⁵	4x10 ⁻⁵	

Muonium ionization method is capable of much higher efficiency – potentially up to 10⁻³ level!

Dependence of yield on laser pulse energy

Muonium ionization efficiency

1) Increase VUV laser pulse energy

We expect modest improvements to VUV energy : 50% (In principle muonium can be ionized with close to 100% efficiency, with ~ 100 μ J at 122 nm)

2) Increase muonium density

- Tighter focusing of the incident muon beam would allow better overlap with laser
- increasing W target surface area (laser drilled or porous W, tungsten coated aerogel)
- SiO2 aerogel

Other factors increasing the number of LE muons available at sample:

- Planned upgrade of ISIS proton current from 200 μ A to 300 μ A \rightarrow immediate 50% increase
- Increasing the thickness of muon production target from 10 to 15 mm
- Increasing the acceleration voltage in LE muon beamline from 9.0 kV to 18.0 kV (TOF reduced by ~400 ns i.e. 16% increase in μ^+ on sample)

More intense VUV?

Can we get more intense 122 nm beam from different laser system?

C. Dölle et al., Appl. Phys. B 75, 629–634 (2002) Generation of 100 µJ pulses at 82.8 nm by frequency tripling of sub-picosecond KrF laser radiation

Non-linear conversion efficiency in gases is typically 10⁻⁴ to 10⁻⁷ but in this case it is claimed to be 0.7% !

100 μJ pulses at 82.8 nm generated by frequency tripling (249 nm) in Ar gas jet. On the other hand: Ganeev RA, Usmanov T, J. OPTICS A 2 (6): 550-556 NOV 2000:

350 nm ps pulses converted to 116.6 nm with $8x10^4$ efficiency (max. 2.4 μ J)

If this conversion efficiency can be reproduced with 0.5 ps pulses at <u>366.27 nm</u> it could: - increase the muonium ionization efficiency to nearly 100% (with **100 \muJ pulses**) - greatly simplify the laser system (only one wavelength needed & need to overlap several laser beams is eliminated) - automatically match the Doppler broadened bandwidth of Mu since the transform limit would be about 300 GHz - time resolution of LE- μ^+ would be reduced to ~ 1 ps

- time resolution of LE- μ^+ would be reduced to ~ 1 ns (limited by extraction ion optics)

Main features of the of this method

- Positive
- Timing determined by laser pulse, which is externally triggered
- Pulse duration only 7.5 ns (comparable to continuous source) and independent of the surface muon pulse structure
- Good energy resolution ~ 14 eV– (in principle as low as 0.2 eV)
- Extremely low background
- Small beam spot size
- Efficiency of conversion from surface muon beam can be, in principle, as high as 10⁻³.

Negative

- Only suitable for pulsed sources with low repetition rate
- Inherent loss of muon polarization (50%) BUT can be recovered

Summary - Present characteristics

Low energy μ^+ beam	μSR spectrometer
Intensity at sample ~ 15-20 μ^+/s Beam diameter (FWHM): 4 mm Energy at target region 0.2 eV Energy after re-acceleration 0.1-18 keV Energy uncertainty after re-acceleration ~14 eV Pulse repetition rate 25 Hz Single pulse structure 7.5 ns (FWHM) at 9.0 keV Spin polarisation ~50%	Background: <0.01 per 15 μ s after μ^+ pulse Count rates: ~ 50 kev/hour (compared to 20-50 Mev/hour @ bulk μ SR at ISIS) TF : < 60 mT ZF compensation to 0.1 μ T Sample temperature: 10K-300K External LE- μ^+ trigger

J-PARC facility

- projected muon intensity ~ $10^8 \mu^+/s$ (comparable to current PSI beam)
- projected smaller diameter of the surface muon beam
- 25 Hz operation (double pulse structure 600 ns separation)

We can expect more than $10^4 \text{ LE-}\mu^+/\text{s in } <10 \text{ ns pulse}$

Comparison with PSI LE-muon beam

	PSI	RIKEN-RAL	LE-muons @PSI	LE-muons @RIKEN- RAL
tine structure	DC	pulsed	DC	pulsed
beam intensity	5x10 ⁷ /sec	10 ⁶ /sec	8x10 ³ /sec	2x10 ¹ /sec
external trigger capability	No	Yes	No	Yes
polarization	100%	100%	100%	50%
tine resolution	2nsec	100nsec	7nsec	7 5nsec
in plantation energy	4 JM eV	4 JM eV	ly 30keV	0ly 20keV
energy resolution	0 AM eV	0 AM eV	500eV	14 eV
S/N (=N0/B0)	~150	~100000		>10000
observable relaxation time	5y 9000	200y 32000		20y 12000
beam size (FWHM)	30m m	30m m	15m m	4 m m

